湘教版选修2-2 4.2导数的运算练习卷
定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为( )
A.γ>α>β | B.β>α>γ | C.α>β>γ | D.β>γ>α |
定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b),满足f′(x1)=,f′(x2)=,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3﹣x2+a是[0,a]上“双中值函数”,则实数a的取值范围是( )
A.(1,3) | B.(,3) | C.(1,) | D.(1,)∪(,3) |
函数f(x)=sinx+2xf′(),f′(x)为f(x)的导函数,令a=﹣,b=log32,则下列关系正确的是( )
A.f(a)>f(b) | B.f(a)<f(b) | C.f(a)=f(b) | D.f(|a|)>f(b) |
已知函数f(x)是定义在R上的可导函数,其导函数记为f′(x),若对于任意实数x,有f(x)>f′(x),且y=f(x)﹣1为奇函数,则不等式f(x)<ex的解集为( )
A.(﹣∞,0) | B.(0,+∞) | C.(﹣∞,e4) | D.(e4,+∞) |
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=,则g()+=( )
A.2011 | B.2012 | C.2013 | D.2014 |
己知f(x)是定义在(0,+∞)上的单调函数,且∀x∈(0,+∞),f[f(x)﹣lnx]=1,则方程f(x)+2x2f′(x)=7的解所在的区间为( )
A.(0,1) | B.(1,2) | C.(2,3) | D.(3,4) |
已知函数f(x)=lnx+tanα(α∈(0,))的导函数为f′(x),若使得f′(x0)=f(x0)立的x0<1,则实数α的取值范围为( )
A.(,) | B.(0,) | C.(,) | D.(0,) |
已知f(x)是定义在(0,+∞)上的单调函数,f′(x)是f(x)的导函数,若对∀x∈(0,+∞),都有f[f(x)﹣2x]=3,则方程f′(x)﹣=0的解所在的区间是( )
A.(0,) | B.(,1) | C.(1,2) | D.(2,3) |
已知任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有对称中心M(x0,f(x0)),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x)=0.若函数f(x)=x3﹣3x2,则f()+f()+f()+…+f()=( )
A.4027 | B.﹣4027 | C.8054 | D.﹣8054 |
已知定义在(0,+∞)上的单调函数f(x),对∀x∈(0,+∞),都有f[f(x)﹣log3 x]=4,则函数g(x)=f(x﹣1)﹣f′(x﹣1)﹣3的零点所在区间是( )
A.(1,2) | B.(2,3) | C.(,1) | D.(0,) |
已知f(x)为R上的可导函数,且满足f(x)>f′(x),对任意正实数a,下面不等式恒成立的是( )
A. |
B. |
C.f(a)>eaf(0) |
D.f(a)<eaf(0) |
下列四个图象中,有一个是函数f(x)=x3+ax2+(a2﹣4)x+1(a∈R,a≠0)的导函数y=f′(x)的图象,则f(1)=( )
A. | B. | C.﹣ | D.1 |
已知函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),若x1,x0,x2成等差数列,f′(x)是f(x)的导函数,则( )
A.f′(x0)<0 | B.f′(x0)=0 |
C.f′(x0)>0 | D.f′(x0)的符号无法确定 |
设函数f(x)的导函数为f′(x),若对任意x∈R都有f′(x)>f(x)成立,则( )
A.f(ln2014)<2014f(0) |
B.f(ln2014)=2014f(0) |
C.f(ln2014)>2014f(0) |
D.f(ln2014)与2014f(0)的大小关系不确定 |
定义域为R的函数f(x),满足f(0)=1,f′(x)<f(x)+1,则不等式f(x)+1<2ex的解集为( )
A.{x∈R|x>1} | B.{x∈R|0<x<1} | C.{x∈R|x<0} | D.{x∈R|x>0} |