初中数学

(自贡)如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(自贡)如图,在△ABC中,D.E分别是AB、AC边的中点.求证:DEBC.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(内江)(本小题满分7分)计算:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(内江)(本小题满分9分)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.

(1)求证:△ABD≌△BEC;
(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(内江)(本小题满分9分)我市准备在相距2千米的M,N两工厂间修一条笔直的公路,但在M地北偏东45°方向、N地北偏西60°方向的P处,有一个半径为0.6千米的住宅小区(如图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:≈1.41,≈1.73)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(内江)如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.

(1)试说明CE是⊙O的切线;
(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;
(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(内江)如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC.

(1)求抛物线的函数关系式;
(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(),求△ABN的面积S与t的函数关系式;
(3)若时△OPN∽△COB,求点N的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(达州)化简,并求值,其中a与2、3构成△ABC的三边,且a为整数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(达州)学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:

(1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;
(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;
(3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;
已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(取1.732,结果保留整数)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(南充)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.

求证:(1)△AEF≌△CEB;
(2)AF=2CD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(南充)如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.

(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)
(2)如果AM=1,sin∠DMF=,求AB的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(成都)(本小题满分8分)如图,登山缆车从点A出发,途经点B后到达终点C,其中AB段与BC段的运行路程均为200m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67 ,cos42°≈0.74 , tan42°≈0.90)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(成都)(本小题满分10分)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.

(1)求证:△ABC≌△EBF;
(2)试判断BD与⊙O的位置关系,并说明理由;
(3)若AB=1,求HG•HB的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(成都)(本小题满分10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90.

(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
i)求证:△CAE∽△CBF;
ii)若BE=1,AE=2,求CE的长;
(2)如图②,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值;
(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(乐山)某班开展安全知识竞赛活动,班长将所有同学的成绩分成四类,并制作了如下的统计图表:

根据图表信息,回答下列问题:
(1)该班共有学生        人;表中a=       
(2)将丁类的五名学生分别记为A、B、C、D、E,现从中随机挑选两名学生参加学校的决赛,请借助树状图、列表或其他方式求B一定能参加决赛的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学解答题