初中数学

如图,直线与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P.

(1)求该抛物线的解析式;
(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.
(1)求利润S(元)与销售单价x(元)之间的关系式;
(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为,那么小球抛出秒后达到最高点.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

二次函数图象的顶点坐标是

A.(1,-2) B.(-1,-2) C.(-1,2) D.(1,2)
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:

(1)试判断y与x之间的函数关系,并求出函数关系式;
(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;
(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点.

(1)求抛物线的解析式.
(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

二次函数y=a(x-1)2+k(a>0)中x、y的几组对应值如下表.

x
-2
1
5
y
m
n
p

 
表中m、n、p的大小关系为              (用“<”连接)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

二次函数y=ax2+bx+c的图象如图所示,当函数值y<0时,自变量x的取值范围是              

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

将二次函数y=3(x+2)2-4的图象向右平移3个单位,再向上平移1个单位,所得的图象的函数关系式为               

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,抛物线y=-x2+x与矩形OABC的边AB交于点D、B,A(0,3),C(6,0),则图中抛物线与矩形OABC形成的阴影部分的面积的和为( )

A.3         B.4           C.5             D.6

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是( )

A.y的最大值小于0
B.当x=0时,y的值大于1
C.当x=-1时,y的值大于1
D.当x=-3时,y的值小于0
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

根据下列要求,解答相关问题.
(1)请补全以下求不等式﹣2x2﹣4x>0的解集的过程.
①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).
②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为      ;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.
③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)抛物线m1:y1=a1x2+b1x+c1中,函数y1与自变量x之间的部分对应值如表:

设抛物线m1的顶点为P,与y轴的交点为C,则点P的坐标为        ,点C的坐标为     
(2)将设抛物线m1沿x轴翻折,得到抛物线m2:y2=a2x2+b2x+c2,则当x=-3时,y2=        
(3)在(1)的条件下,将抛物线m1沿水平方向平移,得到抛物线m3.设抛物线m1与x轴交于A,B两点(点A在点B的左侧),抛物线m3与x轴交于M,N两点(点M在点N的左侧).过点C作平行于x轴的直线,交抛物线m3于点K.问:是否存在以A,C,K,M为顶点的四边形是菱形的情形?若存在,请求出点K的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数y=x2+bx+c的图象过(2,-1)和(4,3)两点,求y=x2+bx+c的表达式

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

把二次函数的表达式y=x2-4x+6化为y=a(x-h)2+k的形式,那么h+k=    

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值试题