小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.
根据统计图,回答下面的问题:
(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?
(2)请简单描述月用电量与气温之间的关系;
(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.
为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了20天的调查,将所得数据绘制成如下统计图(图2不完整)
请根据所给信息,解答下列问题:
(1)第7天,这一路口的行人交通违章次数是多少次?这20天中,行人交通违章6次的有多少天?
(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)
(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了4次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?
为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为 ,则第3次检测得到的氨氮含量是 .
某汽车厂去年每个季度汽车销售数量(辆 占当季汽车产量(辆 百分比的统计图如图所示.根据统计图回答下列问题:
(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;
(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从 降到 ,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?
绵阳某公司销售部统计了每个销售员在某月的销售额, 绘制了如下折线统计图和扇形统计图:
设销售员的月销售额为 (单 位: 万元) . 销售部规定: 当 时为“不称职”, 当 时为“基本称职”, 当 时为“称职”, 当 时为“优秀” . 根据以上信息, 解答下列问题:
(1) 补全折线统计图和扇形统计图;
(2) 求所有“称职”和“优秀”的销售员月销售额的中位数和众数;
(3) 为了调动销售员的积极性, 销售部决定制定一个月销售额奖励标准, 凡月销售额达到或超过这个标准的销售员将获得奖励 . 如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖, 月销售额奖励标准应定为多少万元 (结 果取整数) ?并简述其理由 .
西昌市教科知局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:
(1) 年抽取的调查人数最少; 年抽取的调查人数中男生、女生人数相等;
(2)求图2中“短跑”在扇形图中所占的圆心角 的度数;
(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?
(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?
如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是
A.极差是 B.众数是 C.中位数是 D.平均数是
为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表
一周诗词诵背数量 |
3首 |
4首 |
5首 |
6首 |
7首 |
8首 |
人数 |
10 |
10 |
15 |
40 |
25 |
20 |
请根据调查的信息分析:
(1)活动启动之初学生“一周诗词诵背数量”的中位数为 ;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:
年份 |
2014 |
2015 |
2016 |
2017(预计) |
快递件总量(亿件) |
140 |
207 |
310 |
450 |
电商包裹件(亿件) |
98 |
153 |
235 |
351 |
(1)请选择适当的统计图,描述 年“电商包裹件”占当年“快递件”总量的百分比(精确到 );
(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?
自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.
根据上面图表信息,回答下列问题:
(1)截止5月31日该国新冠肺炎感染总人数累计为 万人,扇形统计图中 岁感染人数对应圆心角的度数为 ;
(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;
(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;
(4)若该国感染病例中从低到高各年龄段的死亡率依次为 、 、 、 、 ,求该国新冠肺炎感染病例的平均死亡率.
甲、乙两人连续5次射击成绩如图所示,下列说法中正确的是
A.甲的成绩更稳定B.乙的成绩更稳定
C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定
小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是 .
某企业 月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是
A. 月份利润的众数是130万元
B. 月份利润的中位数是130万元
C. 月份利润的平均数是130万元
D. 月份利润的极差是40万元
某校举办“打造平安校园”活动,随机抽取了部分学生进行校园安全知识测试.将这些学生的测试结果分为四个等级: 级:优秀; 级:良好; 级:及格; 级:不及格,并将测试结果绘制成如下统计图.请你根据图中信息,解答下列问题:
(1)本次参加校园安全知识测试的学生有多少人?
(2)计算 级所在扇形圆心角的度数,并补全折线统计图;
(3)若该校有学生1000名,请根据测试结果,估计该校达到及格和及格以上的学生共有多少人?