初中数学

(1)阅读理解

我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.

根据“赵爽弦图”写出勾股定理和推理过程;

(2)问题解决

勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形 ACDE 的中心 O ,作 FG HP ,将它分成4份,所分成的四部分和以 BC 为边的正方形恰好能拼成以 AB 为边的正方形.若 AC = 12 BC = 5 ,求 EF 的值;

(3)拓展探究

如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形 N 的边长为定值 n ,小正方形 A B C D 的边长分别为 a b c d

已知 1 = 2 = 3 = α ,当角 α ( 0 ° < α < 90 ° ) 变化时,探究 b c 的关系式,并写出该关系式及解答过程 ( b c 的关系式用含 n 的式子表示).

来源:2021年贵州省贵阳市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

初中数学勾股定理的证明试题