如图,为半圆的直径,点为半圆上任一点.
(1)若,过点作半圆的切线交直线于点.求证:;
(2)若,过点作的平行线交半圆于点.当以点,,,为顶点的四边形为菱形时,求的长.
图①、图②均是的正方形网格,每个小正方形的顶点称为格点,线段、的端点均在格点上.在图①、图②给定的网格中以、为邻边各画一个四边形,使第四个顶点在格点上.要求:
(1)所画的两个四边形均是轴对称图形.
(2)所画的两个四边形不全等.
已知:如图,点 在线段 外,且 ,求证:点 在线段 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是
A. |
作 的平分线 交 于点 |
B. |
过点 作 于点 且 |
C. |
取 中点 ,连接 |
D. |
过点 作 ,垂足为 |
如图,在中,,点在上(不与点,重合).只需添加一个条件即可证明,这个条件可以是 (写出一个即可).
[问题提出]
学习了三角形全等的判定方法(即“SAS”,“ASA”,“AAS”,“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
[初步思考]我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
[深入探究]
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据________,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角.求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹).
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接填写结论:
在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,若________,则△ABC≌△DEF.
如图为八个全等的正六边形(六条边相等,六个角相等)紧密排列在同一平面上的情形.根据图中标示的各点位置,下列三角形中与△ACD全等的是( )
A.△ACF | B.△AED | C.△ABC | D.△BCF |
如图,在下列条件中,不能证明△ABD≌△ACD的条件是( )
A.∠B=∠C,BD=DC |
B.∠ADB=∠ADC,BD=DC |
C.∠B=∠C,∠BAD=∠CAD |
D.BD=DC,AB="AC" |
如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A.AD=CB | B.∠A=∠C | C.BE=DF | D.AD//BC |
(年贵州省遵义市)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD的面积.
(年贵州省黔东南州)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件 ,使△ABD≌△CDB.(只需写一个)
(年青海省中考)如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是 (只需写一个,不添加辅助线).