阅读下列材料,并解决后面的问题.
★阅读材料:
我国是历史上较早发现并运用“勾股定理”的国家之一.我中古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.请运用“勾股定理”解决以下问题:
(1)如图一,分别以直角三角形的边为边长作正方形,其中s1=400,s2=225,则s3= .
(2)如图二,是一个园柱形饮料罐,底面半径=8,高=15,顶面正中有一个小园孔,则一条直达底部的直吸管的最大长度是 .注:罐壁厚度和顶部园孔直径忽略不计.
(3)如图三,所示的直角三角形中,AB=6.则s1+s2的值= . 注π值取3.
(4)如图四的圆柱,高=5厘米,底面半径=4厘米,在园柱底面A点有一只蚂蚁,它想吃到与A点相对的B点处的食物,需要爬行的路程是多少?小聪是这样思考的:
①将该园柱的侧面展开后得到一个长方形,如图五所示(A点的位置已经给出),请在图中中标出B点的位置并连接AB.
②小聪认为线段AB的长度是蚂蚁爬行的最短路程,那么蚂蚁爬行的最短路程是 厘米.注:π值取3.
(5)如图六,在长方形的底面A点有一只蚂蚁,想吃到上底面与A点相对的B点处的食物,它沿长方形表面爬行的最短路程是 厘米.
有两个体积之比为5:8的圆柱,它们的侧面的展开图为相同的长方形,如果把该长方形的长和宽同时增加6.其面积增加了114.那么这个长方形的面积 .
圆柱的上、下底都是 形,而且面积大小 ;上、下底之间的距离叫做圆柱的 ,圆柱的侧面沿高展开是一个 ,它的长是圆柱的 ,宽是圆柱的 .
一根圆柱形木料,长1.5米,把它沿底面直径平均锯成两部分后,表面积增加了600平方厘米,这根木料的体积是( )立方厘米。
用塑料绳捆扎一个圆柱形的蛋糕盒(如图,单位:厘米),打结处正好是底面圆心,打结用去绳长25厘米.扎这个盒子至少用去塑料绳多少厘米?在它的整个侧面贴上商标和说明,这部分的面积是多少平方厘米?
压路机的滚筒是一个圆柱体,它的底面直径是1米,长是1.5米.如果它转5圈,一共压路多少平方米?
两个体积相等的圆柱和圆锥底面积相等,圆柱高12厘米,圆锥高( )
A.4厘米 B.36厘米 C.6厘米
一段圆柱形木料,如果截成两个小圆柱,它的表面积增加6.28平方厘米,如果沿直径将其分成两半,这的表面积增加80平方厘米,求圆柱的表面积?