想要获得既高产又抗病毒、抗寒、抗旱、抗除草剂等多重优点的农作物,以下哪种方法能做到( )
A.细胞融合技术 | B.转基因技术 |
C.组织培养技术 | D.人工诱变 |
关于现代生物技术应用的叙述,错误的是( )
A.蛋白质工程可合成自然界中不存在的蛋白质 |
B.体细胞杂交技术可用于克隆动物和制备单克隆抗体 |
C.植物组织培养技术可用于植物茎尖脱毒 |
D.动物细胞培养技术可用于转基因动物的培育 |
采用基因工程的方法培育抗虫棉,下列导入目的基因的做法正确的是
①将毒素蛋白注射到棉受精卵中
②将编码毒素蛋白的DNA序列,注射到棉受精卵中
③将编码毒素蛋白的DNA序列,与质粒重组,导入细菌,用该细菌感染棉的体细胞,再进行组织培养
④将编码毒素蛋白的DNA序列,与细菌质粒重组,注射到棉的子房并进入受精卵
A.①② | B.②③ | C.③④ | D.①④ |
在基因工程中,限制酶主要用于
A.目的基因的提取和导入 |
B.目的基因的导入和检测 |
C.目的基因与运载体结合和导入 |
D.目的基因的提取和与运载体结合 |
某化合物含C、H、O、N、S等元素,下列哪项最不可能是它的功能( )
A.在特定的位点上切割基因
B.抵抗病毒引起的感染
C.降低血糖
D.激发并维持第二性征
对以下几种育种方法的分析,正确的是( )
A.转基因技术能让A物种表达出B物种的某优良性状 |
B.两个亲本的基因型是AAbb和aaBB,要培育出基因型为aabb的后代,最简单的方法是单倍体育种 |
C.单倍体育种没有生产实践意义,因为得到的单倍体往往高度不育 |
D.经人工诱导得到的四倍体西瓜植株与普通西瓜植株是同一物种 |
基因芯片的测序原理是DNA分子杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法。先在一块芯片表面固定序列已知的核苷酸的探针,当溶液中带有荧光标记的靶核酸序列与基因芯片上对应位置的核酸探针产生互补匹配时,通过确定荧光强度最强的探针位置,获得一组序列完全互补的探针序列。据此可重组出靶核酸的序列TATGCAATCTAG(过程见下图图1)
若靶核酸序列与八核苷酸的探针杂交后,荧光强度最强的探针位置如图2所示,溶液中靶序列为( )
A.AGCCTAGCTGAA |
B.TCGGATCGACTT |
C.ATCGACTT |
D.TAGCTGAA |
下列技术依据D.NA.分子杂交原理的是( )
①用D.NA.分子探针诊断疾病
②B.淋巴细胞与骨髓瘤细胞的杂交
③快速灵敏的检测饮用水中病毒的含量
④目的基因与运载体结合形成重组D.NA.分子
A.②③ B.①③
C.③④ D.①④
美国加利福尼亚州索尔克生物研究所专家罗纳德·埃文斯领导的研究小组发现人体内存在一种被称为“脂肪控制开关”的基因,这个基因一旦开启,就能提高对脂肪的消耗并产生“抗疲劳”肌肉,帮助心脏和神经系统保持持久耐力。美国科学家公布研究报告说,他们通过向实验老鼠转入“脂肪控制开关”基因,成功培育出“马拉松”老鼠,比正常老鼠多跑出一倍距离,速度也快一倍。下列叙述错误的是( )
A.转入“脂肪控制开关”基因的有效方法是向实验老鼠肌肉中注入含“脂肪控制开关”基因的重组DNA |
B.“脂肪控制开关”的基因中存在起始密码 |
C.“马拉松”老鼠在改善机体耐力的同时,也提高了机体消耗脂肪的能力 |
D.可以向“马拉松”老鼠转入其他的基因兴奋剂如EPO(促红细胞生成素)基因,培育“超级运动员” |
某转基因玉米能高效合成一种多肽类的蛋白酶抑制剂,积累于茎中,使取食它的害虫体内的消化酶受抑制,无法消化食物而死。下列就该玉米对人类的安全性评定中,不符合生物学原理的是( )。
A.安全,玉米的蛋白酶抑制剂对人体的消化酶很可能无影响,因为人体消化酶和害虫消化酶结构上存在差异 |
B.安全,人类通常食用煮熟的玉米食品,玉米的蛋白酶抑制剂已被高温破坏,不抑制人体消化酶 |
C.不安全,玉米的食用部分也可能含蛋白酶抑制剂,食用后使人无法消化蛋白质而患病 |
D.不安全,玉米的蛋白酶抑制剂基因可通过食物链在人体细胞内表达,使人无法消化食物而患病 |
下图表示转基因动、植物的成功培育过程,有关叙述错误的是( )
A.目的基因导入受体细胞A前,受体细胞要用Ca2+处理,使其处于感受态
B.①过程用到的生物技术包括动物细胞培养、胚胎移植
C.过程②要用到植物组织培养技术
D.可通过标记基因对受体细胞A、B进行筛选
下列有关生物技术安全和伦理问题的观点不合理的是
A.对于转基因技术,我们应该趋利避害,理性看待 |
B.我国禁止生殖性克隆和治疗性克隆 |
C.我国不发展、不生产、不储存生物武器并反对其扩散 |
D.对于基因检测应该保护个人遗传信息的隐私权 |
下列有关载体的叙述,错误的是
A.肝脏细胞膜上葡萄糖的转运载体是蛋白质 |
B.基因表达过程中氨基酸的运载工具是tRNA |
C.醋酸菌遗传物质的主要载体是染色体 |
D.目的基因进入受体细胞的常用载体是质粒 |
基因芯片技术是近几年才发展起来的崭新技术,涉及生命科学、信息学、微电子学、材料学等众多的学科,固定在芯片上的各个探针是已知的单链DNA分子,而待测DNA分子用同位素或能发光的物质标记。如果这些待测的DNA分子中正好有能与芯片上的DNA配对的它们就会结合起来,并在结合的位置发出荧光或者射线,出现“反应信号”,下列说法中不正确的是:( )
A.基因芯片的工作原理是碱基互补配对 |
B.待测的DNA分子首先要解旋变为单链,才可用基因芯片测序 |
C.待测的DNA分子可以直接用基因芯片测序 |
D.由于基因芯片技术可以检测未知DNA碱基序列,因而具有广泛的应用前景,好比能识别的“基因身份” |
已知正常的β珠蛋白基因(以βA表示)经MstⅡ限制性核酸内切酶切割后可得到长度为1.15 kb和0.2 kb的两个片段(其中0.2 kb的片段通常无法检测到),异常的β珠蛋白基因(以βS表示)由于突变恰好在MstⅡ限制性核酸内切酶切割点上,因而失去了该酶切位点,经MstⅡ限制性核酸内切酶处理后只能形成一个1.35 kb的DNA片段,如图1;现用MstⅡ限制性核酸内切酶对编号为1、2、3的三份样品进行处理,并进行DNA电泳(电泳时分子量越小扩散越快),结果如图2,则1、2、3号样品所对应个体的基因型分别是(以βA、βS表示相关的基因)
A.βSβS、βAβS、βAβA
B.βAβA、βAβS、βSβS
C.βAβS、βSβS、βAβA
D.βAβS、βAβA、βSβS