大约在70个表现正常的人中有一个含白化基因的杂合体。一个双亲正常但有白化病弟弟的正常女子,与一无亲缘关系的正常男子婚配。问她所生的孩子患白化病的概率是多少( )
A.1/140 | B.1/280 | C.1/420 | D.1/560 |
豌豆的花色中紫色对白色为显性。一株杂合紫花豌豆连续自交繁殖三代,则子三代中开紫花的豌豆植株和开白花的豌豆植株的比例是( )
A.3∶1 | B.15∶7 | C.9∶7 | D.15∶9 |
种植基因型为AA和Aa的豌豆,两者数量之比是1∶3。自然状态下(假设结实率相同),其子代中基因型为AA、Aa、aa的数量之比为( )
A.7∶6∶3 B.5∶2∶1 C.3∶2∶1 D.1∶2∶1
在一些性状的遗传中,具有某种基因型的受精卵不能完成胚胎发育,导致后代中不存在该基因型的个体,从而使性状的分离比例发生变化。小鼠毛色的遗传就是一个例子。一个研究小组,经大量重复实验,在小鼠毛色遗传的研究中发现:
A.黑色鼠与黑色鼠杂交,后代全部为黑色鼠。
B.黄色鼠与黄色鼠杂交,后代中黄色鼠与黑色鼠的比例为2∶1。
C.黄色鼠与黑色鼠杂交,后代中黄色鼠与黑色鼠的比例为1∶1。
根据上述实验结果,回答下列问题:(控制毛色的显性基因用A表示,隐性基因用a表示)
⑴通过分析可知,隐性性状是 。
⑵黄色鼠的基因型是 ,黑色鼠的基因型是____________
⑶推测不能完成胚胎发育的受精卵的基因型是__________
⑷写出上述杂交组合C的遗传图解。
通常情况下,下列各选项所描述的变化趋势与图中曲线相符合的有
|
横坐标 |
纵坐标 |
曲线 |
A |
群落的物种丰富度 |
生态系统稳定性大小 |
抵抗力稳定性 |
B |
凝胶色谱分离时间 |
样品中相对分子质量 |
大分子蛋白质 |
C |
Aa豌豆自交代数 |
基因频率大小 |
A或a |
D |
氧的浓度 |
有氧呼吸的强度 |
酵母菌 |
果蝇野生型和5种突变型的性状表现、控制性状的基因符号和基因所在染色体编号如下表
类型 性状 |
①野生型 |
②白眼型 |
③黑身型 |
④残翅型 |
⑤短脂型 |
⑥变胸型 |
染色体 |
眼色 |
红眼W |
白眼W |
|
|
|
|
X(Ⅰ) |
体色 |
灰身B |
|
黑身b |
|
|
|
Ⅱ |
翅型 |
长翅V |
|
|
残翅型v |
|
|
Ⅱ |
肢型 |
正常肢D |
|
|
|
Z短肢d |
|
Ⅱ |
后胸 |
后胸正常H |
|
|
|
|
后胸变形h |
Ⅲ |
注:(1)每种突变型未列出的性状表现与野生型的性状表现相同;
(2)6种果蝇均为纯合体并可作为杂交实验的亲本。请回答:
①确定某性状由细胞核基因决定,还是由细胞质基因决定,可采用的杂交方法是 。
②若进行验证基因分离规律的实验设计,观察和记载后代中翅型的性状表现,第一步,选择杂交的亲本基因型应是 。(只写翅型相关基因的基因型)
(3)若进行验证自由组合规律的实验设计, 观察和记载后代中体色和肢型的遗传表现,第一步,选择杂交的亲本类型(用序号表示)是 ,其对应的基因型是 。
(4)红眼对白眼是一对相对性状,如果不清楚红眼为显性,那么,选择多对纯合的红眼果蝇与纯合
的白眼果蝇杂交,子一代自交,子二代中都是红色个体多于白色个体 ,则 为显性;
如果子二代中都是白色个体多于红色个体 ,则 为显性。
紫色企鹅的常染色体上有一系列决定羽毛颜色的复等位基因:G、gch、gh、g。该基因系列在决定羽毛颜色时,表现型与基因型的关系如下表,请回答下列问题:
(1)企鹅羽毛颜色的基因型共有 种。
羽毛颜色 |
深紫色 |
中紫色 |
浅紫色 |
白色 |
基因型 |
G |
gch |
gh |
gg |
(2)若中紫色雌雄企鹅交配后,后代出现中紫色和白色企鹅,现让子代中的中紫色个体均与浅紫色杂合体交配,请用柱状图表示后代的表现型及比例。(请在坐标图中答题)
(3)基因型Gg的个体是深紫色的,研究发现由于臭氧层“空洞”,近年来在紫外线的辐射增强的地区,某些基因型Gg个体的背部也会长出白色羽毛,产生这种变异的原因最可能是某些细胞发生 ,也可能是染色体 。可采用 方法对上述假设进行探究。
野生型果蝇的腹部和胸部都有短刚毛,而一只突变果蝇的腹部却生出长刚毛,研究者对果蝇的突变进行了系列研究。用这两种果蝇进行杂交实验的结果见图。
(1)根据实验结果分析,果蝇腹部的短刚毛和长刚毛是一对性状,其中长刚毛是性性状。图中①、②基因型(相关基因用表示)依次为。
(2)实验2结果显示:与野生型不同的表现型有种。③基因型为,在实验2后代中该基因型的比例是。
(3)根据果蝇③和果蝇基因型的差异,解释导致前者胸部无刚毛、后者胸部有刚毛的原因:。
(4)检测发现突变基因转录的相对分子质量比野生型的小,推测相关基因发生的变化为。
(5)实验2中出现的胸部无刚毛的性状不是由1新发生突变的基因控制的。作出这一判断的理由是:虽然胸部无刚毛是一个新出现的性状,但,说明控制这个性状的基因不是一个新突变的基因。
亨廷顿舞蹈症是一种遗传神经退化疾病,主要病因是患者第四号染色体上的Huntington基因(用字母H表示)发生变异,产生了变异的蛋白质,该蛋白质在细胞内逐渐聚集,形成大的分子团。一般患者在中年发病,逐渐丧失说话、行动、思考和吞咽的能力,病情大约会持续发展15年到20年,并最终导致患者死亡。在一次人口普查过程中,偶然发现一特殊罕见男患者,其病情延迟达30年以上。通过家谱发现,该男子的父亲患该病,母亲正常,但其外祖父和外祖母皆因患该病死亡。经基因检测,发现该男患者与其他患者相比,出现一个A基因。
(1)由该家族的情况判断,亨廷顿舞蹈症遗传方式为________。
(2)出现A基因的根本原因是________。从发病机理分析,A基因能够使病情延迟大30年以上,最可能的解释是________________________。
(3)若已知A基因位于常染色体上且与H基因不在同一对染色体上。该男患者已经与一正常女性婚配,生一个正常男孩的几率是______。若他们的第二个孩子已确诊患有亨廷顿舞蹈症,则该小孩出现病情延迟的几率是______。
I.烟草是雌雄同株植物,却无法自交产生后代。这是由S基因控制的遗传机制所决定的,其规律如下图所示(注:精子通过花粉管输送到卵细胞所在处,完成受精)。
(1)烟草的S基因分为S1、S2、S3等15种,它们互为_____________,这是_____________的结果。如图可见,如果花粉所含S基因与母本的任何一个S基因种类相同,花粉管就不能伸长完成受精。据此推断在自然条件下,烟草不存在S基因的____________个体。
(2)研究发现,S基因包含控制合成S核酸酶和S因子的两个部分,前者在雌蕊中表达,后者在花粉管中表达,这导致雌蕊和花粉管细胞中所含的________________等分子有所不同。传粉后,雌蕊产生的S核酸酶进入花粉管中,与对应的S因子特异性结合,进而将花粉管中的rRNA降解,据此分析花粉管不能伸长的直接原因是 ____________________________ 。
(3)自然界中许多植物具有与烟草一样的自交不亲和性,这更有利于提高生物遗传性状的___________,为物种的进化提供更丰富的____________,使之更好地适应环境。
II.以一个具有正常叶舌的水稻纯系的种子为材料,进行辐射诱变试验。将辐射后的种子单独隔离种植,发现甲、乙两株的后代各分离出无叶舌突变株,且正常株与无叶舌突变株的分离比例均为3:1。经观察,这些叶舌突变都能真实遗传。请回答:
(1)甲和乙的后代均出现3∶1的分离比,表明辐射诱变处理均导致甲、乙中各有 ________个基因发生________ 性突变。甲株后代中,无叶舌突变基因的频率为 ____ 。
(2)现要研究甲、乙两株叶舌突变是发生在同一对基因上,还是发生在两对基因上,请以上述实验中的甲、乙后代分离出的正常株和无叶舌突变株为实验材料,设计杂交实验予以判断。
①实验设计思路:选取甲、乙后代的 ____________ 进行单株杂交,统计F1的表现型及比例。
②预测实验结果及结论:
若F1全为无叶舌突变株,则 ____ ;
若F1 ________ ,则 ____ 。
(12分,每空2分)玉米籽粒黄色基因T与白色基因t是位于9号染色体上的一对等位基因,已知无正常9号染色体的花粉不能参与受精作用。现有基因型为Tt的黄色籽粒植株A,其细胞中9号染色体如图一。
(1)该黄色籽粒植株的变异类型属于染色体结构变异中的________。
(2)为了确定植株A的T基因位于正常染色体还是异常染色体上,让其进行自交产生F1,实验结果为F1表现型及比例为_________________,说明T基因位于异常染色体上。
(3)以植株A为父本(T在异常染色体上),正常的白色籽粒植株为母本杂交产生的F1中,发现了一株黄色籽粒植株B,其染色体及基因组成如图二。分析该植株出现的原因是由于 (父本,母本)减数分裂过程中_________________未分离。
(4)若(3)中得到的植株B在减数第一次分裂过程中3条9号染色体会随机的移向细胞两极并最终形成含1条和2条9号染色体的配子,那么以植株B为父本进行测交,后代的表现型及比例_________________________,其中得到的染色体异常植株占______。
出芽酵母的生活史如下图1所示,其野生型基因发生突变后,表现为突变型(如图2所示)。研究发现该突变型酵母(单倍体)中有少量又回复为野生型表现型,请分析回答:
(1)酵母的生殖方式Ⅱ与Ⅰ、Ⅲ相比,在减数分裂过程中能发生 ,因而产生的后代具有更大的变异性。
(2)依据图2和表1分析,A基因的突变会导致相应蛋白质的合成 ,进而使其功能缺失。
(3)研究者提出两种假设来解释突变型酵母回复为野生型表现型的原因。
①假设一:a基因又突变回A基因。提出此假设的依据是基因突变具有 性。
②假设二:a基因未发生突变,编码能携带谷氨酰胺的tRNA的基因B突变为b基因(a、b基因位于非同源染色体上)。在a基因表达过程中,b基因的表达产物携带的氨基酸为________,识别的密码子为 ,使a基因指导合成出完整的、有功能的蛋白质。
(4)为检验以上假设是否成立,研究者将回复后的单倍体野生型酵母与原始单倍体野生型酵母进行杂交,获取二倍体个体(F1),培养F1,使其减数分裂产生大量单倍体后代,检测并统计这些单倍体的表现型。
①若F1的单倍体子代表现型为 ,则支持假设一。
②若F1的单倍体子代野生型与突变型比例为3:1,则支持假设二,F1的单倍体子代中野生型个体的基因型是 ,来源于一个F1细胞的四个单倍体子代酵母细胞的表现型及比例可能为 。
烟草是雌雄同株植物,在自然界中不存在杂合子,这是由S基因控制的遗传机制所决定的,如果花粉所含S基因与母本的任何一个S基因种类相同,花粉管就不能伸长完成受精,如下图所示(注:精子通过花粉管输送到卵细胞所在处完成受精),研究发现,S基因包含控制合成S核酸酶和S因子的两个部分,前者在雌蕊中表达,后者在花粉管中表达,传粉后,雌蕊产生的S核酸酶进入花粉管中,与对应的S因子特异性结合,进而将花粉管中的rRNA降解。下列分析错误的是 ( )
A.烟草的S基因分为S1、S2、S3等15种之多,它们之间遵循基因的分离定律 |
B.S基因的种类多,体现了变异具有不定向性,为物种的进化提供丰富的原材料 |
C.基因型为S1S2和S2S3的烟草间行种植,子代基因型比值为S1S3:S2S3:S1S2=1:1:1 |
D.花粉不能伸长的原因可能是细胞中无法合成蛋白质 |
烟草是雌雄同株植物,在自然界中不存在杂合子,这是由S基因控制的遗传机制所决定的,如果花粉所含S基因与母本的任何一个S基因种类相同,花粉管就不能伸长完成受精,如下图所示(注:精子通过花粉管输送到卵细胞所在处完成受精),研究发现,S基因包含控制合成S核酸酶和S因子的两个部分,前者在雌蕊中表达,后者在花粉管中表达,传粉后,雌蕊产生的S核酸酶进入花粉管中,与对应的S因子特异性结合,进而将花粉管中的rRNA降解。下列分析错误的是( )
A.烟草的S基因分为S1、S2、S3等15种之多,它们之间遵循基因的分离定律 |
B.S基因的种类多,体现了变异具有不定向性,为物种的进化提供丰富的原材料 |
C.基因型为S1S2和S2S3的烟草间行种植,子代基因型比值为S1S3:S2S3:S1S2=1:1:1 |
D.花粉不能伸长的原因可能是细胞中无法合成蛋白质 |
桃的果实成熟时,果肉与果皮黏连的称为黏皮,不黏连的称为离皮;果肉与果核黏连的称为黏 核,不黏连的称为离核。已知离皮(A)对黏皮(a)为显性,离核(B)对黏核(b)为显性。现将黏皮、离核的桃(甲)与离皮、黏核的桃(乙)杂交,所产生的子代出现4种表现型。由此推断,甲、乙两株桃的基因型分别是
A.AABB、aabb B.aaBB、AAbb
C. aaBB、Aabb D.aaBb、Aabb