成人的血红蛋白(HbA)由四条肽链组成,其中有两条α链各含141个氨基酸,两条β链各含146个氨基酸。β链第63位氨基酸是组氨酸,其密码子为CAU或CAC。当β链第63位组氨酸被酪氨酸(UAU或UAC)替代后,出现异常血红蛋白(HbM),导致一种贫血症;当β链第63位组氨酸被精氨酸(CGU或CGC)替代,产生异常血红蛋白(HbZ),引起另外一种贫血症。
(1)血红蛋白分子的肽键数目共有________个。
(2)控制合成α链的信使RNA分子至少含有________个核苷酸(包括终止密码子)。
(3)写出正常血红蛋白基因中,决定β链第63位组氨酸密码子的碱基对组成。
(4)在决定β链第63位组氨酸密码子的DNA三个碱基对中,任意一个碱基对发生变化都将产生异常血红蛋白吗?为什么?
(5)诱发生物基因突变的环境因素有很多,请你任意举出两种诱发基因突变的物理因素。
下图表示某生物的育种过程,A和b为控制优良性状的基因,请据图回答问题:
(1)基因A与基因B的本质区别是_____________________________。
(2)经过①、④、⑤过程培育出新品种的育种方式称为 。
(3)过程⑥所需试剂的作用是 。
(4)过程⑧育种方式的原理是 ,该方式诱导生物发生的变异具有的特点_________,所以为获得优良品种,要扩大育种规模。
(5)已知基因B(宽叶)、b(窄叶)所在染色体会发生部分缺失(如右图所示),缺失区段不包括B或b基因,也不影响减数分裂过程,但可导致含缺失染色体的花粉不育。若B-和b-表示该基因所在染色体发生部分缺失。现以基因型为Bb-个体作母本,B-b个体作父本,则子代的表现型及其比例为_____________ ________。
果蝇是做遗传实验很好的材料,在正常的培养温度25 ℃时,经过12天就可以完成一个世代,每只雌果蝇能产生几百个后代。某一兴趣小组,在暑期饲养了一批纯合长翅红眼果蝇幼虫,准备做遗传实验,因当时天气炎热气温高达35 ℃以上,他们将果蝇幼虫放在有空调的实验室中,调节室温至25 ℃培养。不料培养的第七天停电,空调停用一天,也未采取别的降温措施。结果培养出的成虫中出现了一定数量的残翅果蝇(有雌有雄)。
(1)基因对性状的控制有两种情况,一些基因通过____________控制来控制代谢过程,从而控制生物的性状;另一些基因是通过控制____________来直接影响性状。果蝇细胞中基因的载体有____________。
(2)关于本实验中残翅变异的形成有两种观点:①残翅是单纯温度变化影响的结果,其遗传物质没有发生改变。②残翅的形成是遗传物质改变造成的。请设计一个实验探究关于残翅形成的原因,简要写出你的实验设计思路,并对可能出现的结果进行分析。________________
___________________________________________________________________________。
(3)经研究发现正常情况下,残翅是常染色体隐性遗传,白眼为伴X隐性遗传。现让纯合的长翅白眼雄果蝇与纯合的残翅红眼雌果蝇杂交,F1雌雄个体交配,后代中残翅红眼果蝇中雌雄比例为_________________________________________________________________。
(4)你认为基因、环境因素、性状三者关系是怎样的?______________________________。
(每空1分,共10分)小鼠的皮毛颜色由常染色体上的两对基因控制,其中A/a控制灰色物质合成,B/b控制黑色物质合成。两对基因控制有色物质合成的关系如下图:
(1)选取三只不同颜色的纯合小鼠(甲—灰鼠,乙—白鼠,丙—黑鼠)进行杂交,结果如下:
|
亲本组合 |
F1 |
F2 |
实验一 |
甲×乙 |
全为灰鼠 |
9灰鼠∶3黑鼠∶4白鼠 |
实验二 |
乙×丙 |
全为黑鼠 |
3黑鼠∶1白鼠 |
①两对基因(A/a和B/b)位于________对染色体上,小鼠乙的基因型为________。
②实验一的F2中,白鼠共有________种基因型,灰鼠中杂合体占的比例为________。
③图中有色物质1代表________色物质,实验二的F2中黑鼠的基因型为________。
(2)在纯合灰鼠群体的后代中偶然发现一只黄色雄鼠(丁),让丁与纯合黑鼠杂交,结果如下:
|
亲本组合 |
F1 |
F2 |
实验三 |
丁×纯合 黑鼠 |
1黄鼠∶1灰鼠 |
F1黄鼠随机交配:3黄鼠∶1黑鼠 |
F1灰鼠随机交配:3灰鼠∶1黑鼠 |
①据此推测:小鼠丁的黄色性状是由基因________突变产生的,该突变属于________性突变。
②为验证上述推测,可用实验三F1的黄鼠与灰鼠杂交。若后代的表现型及比例为______ _ ,则上述推测正确。
③用3种不同颜色的荧光,分别标记小鼠丁精原细胞的基因A、B及突变产生的新基因,观察其分裂过程,发现某个次级精母细胞有3种不同颜色的4个荧光点,其原因是___________。
果蝇的长翅(V)对残翅(v)为显性。但是即使是纯合的长翅品系的幼虫,在35 ℃温度条件下培养(正常培养温度为25 ℃),长成的成体果蝇仍为残翅,这种现象称为“表型模拟”。
(1)这种模拟的表现性状能否遗传?为什么?
____________________________________________________。
(2)现有一只残翅果蝇,如何判断它是属于纯合的(vv)还是“表型模拟”?
_____________________________________________________________________。
如图所示,科研小组用60Co照射萌发的棉花种子,当代获得棕色(纤维颜色)新性状,自交Ⅰ代获得低酚(棉酚含量)新性状。已知棉花的纤维颜色由一对基因(A、a)控制,棉酚含量由另一对基因(B、b)控制,两对基因独立遗传。请回答:
(1)两个新性状中,棕色是________性状,控制该性状基因的出现是________的结果。
(2)当代棕色、高酚的棉花植株基因型是________。棕色棉抗虫能力强,且该地区限制使用杀虫剂,因此可以预测未来棉花种群中,棉花纤维颜色基因型频率最高的是________。
(3)棕色棉抗虫能力强,低酚棉产量高。为获得抗虫高产棉花新品种,研究人员将Ⅰ代中棕色、高酚植株连续自交,从中得到纯合棕色、高酚植株。请你利用该纯合体作为一个亲本,再从Ⅰ代中选择另一个亲本,尽快的选育出抗虫高产(棕色、低酚)的纯合棉花新品种(用遗传图解和必要的文字表示)。
某二倍体植物的花色由位于三对同源染色体上的三对等位基因(Aa、Bb、Dd)控制,研究发现体细胞中的d基因数多于D基因时,D基因不能表达,且A基因对B基因表达有抑制作用如图甲,某黄色突变体细胞基因型与其可能的染色体组成如图乙所示(其他染色体与基因均正常,产生的各种配子正常存活)
(1)根据图甲,正常情况下,黄花性状的可能基因型有: 。
(2)基因型为AAbbdd的白花植株和纯合黄花植株杂交,F2植株的表现型及比例为 ,F2白花中纯合子的比例为 。
(3)图乙中,②、③的变异类型分别是 ;基因型为aaBbDdd的突变体花色为 。
(4)为了确定aaBbDdd植株属于图乙中的哪一种突变体,设计以下实验。
实验步骤:让该突变体与基因型为aaBBDD的植株杂交,观察并统计子代的表现型与比例.
结果预测:
Ⅰ若子代中 ,则其为突变体①;
Ⅱ若子代中 ,则其为突变体②;
Ⅲ若子代中 ,则其为突变体③。
请回答下列有关遗传的问题
Ⅰ.图①—③分别表示人体细胞中发生的3种生物大分子的合成过程。请回答下列问题:
(1)过程①发生的时期是 和
(2)细胞中过程②发生的主要场所是 ,该过程是在 酶的作用下,将核糖核苷酸连接在一起形成α链。
(3)已知过程②的α链中鸟嘌呤与尿嘧啶之和占碱基总数的54%,α链及其模板链对应区段的碱基中鸟嘌呤分别占30%、20%,则与α链对应的DNA区段中腺嘌呤所占的碱基比例为 。
(4)图中y是某种tRNA,它由 (三个或多个)个核糖核苷酸组成的,其中CAA称为 ,一种y可以转运 种氨基酸。若合成该蛋白质的基因含有600个碱基对,则该蛋白质最多由 种氨基酸组成。
Ⅱ.下图表示乙醇进入猕猴(2n=42)机体内的代谢途径,若猕猴体内缺乏酶1,喝酒脸色基本不变但易醉,称为“白脸猕猴”;缺乏酶2,喝酒后乙醛积累刺激血管引起脸红,称为“红脸猕猴”;若上述两种酶都有,则乙醇能彻底氧化分解,号称“不醉猕猴”。请据图回答下列问题:
(1)乙醇进入机体的代谢途径,说明基因控制性状是通过__________________:从以上资料可判断猕猴的乙醇代谢与性别关系不大,判断的理由是___________。
(2)基因b由基因B突变形成,基因B也可以突变成其他多种形式的等位基因,这体现了基因突变具有__________的特点。若对猕猴进行基因组测序,需要检测______________条染色体。
(3)“红脸猕猴”的基因型有_____________种;一对“红脸猕猴”所生的子代中,有表现为“不醉猕猴”和“白脸猕猴”的个体,则再生一个“不醉猕猴”雄性个体的概率是_____________。
(4)请你补充完成设计实验,判断某“白脸猕猴”雄猴的基因型。
实验步骤:
①让该“白脸猕猴”与多只纯合的“不醉猕猴”交配,并产生多只后代:
②观察、统计后代的表现型及比例。
结果预测:
I.若子代_____________________,则该“白脸猕猴”雄猴基因型为aaBB。
II.若子代_____________________,则该“白脸猕猴”雄猴基因型为aaBb。
Ⅲ.若子代_____________________,则该“白脸猕猴”雄猴基因型为aabb。
果蝇的性染色体组成为XY型,其中R和r控制果蝇的红眼和白眼,B和b控制果蝇的刚毛和截毛。R、r和B、b两对基因位于性染色体上(如图乙)。图甲中Ⅰ表示X和Y染色体的同源区段,在该区段上基因成对存在,Ⅱ和Ⅲ是非同源区段,在Ⅱ和Ⅲ上分别含有X和Y染色体所特有的基因。请回答下列问题。
(1)果蝇的B和b基因位于图甲中的_________(填序号)区段,R和r基因位于图甲中的________(填序号)区段。
(2)在减数分裂时,图甲中的X和Y染色体之间有交叉互换现象的是________(填序号)区段。
(3)已知某一刚毛雄果蝇的体细胞中有B和b两种基因,请写出该果蝇可能的基因型,并设计实验探究B和b在性染色体上的位置情况。
①可能的基因型:______________________________。
②设计实验:______________________________________________________________________。
③预测结果和结论:如果后代中雌性个体全为刚毛,雄性个体全为截毛,说明_______________;
如果后代中雌性个体全为截毛,雄性个体全为刚毛,说明______________________________。
青蒿素是治疗疟疾的重要药物。利用雌雄同株的野生型青蒿(二倍体,体细胞染色体数为18),通过传统育种和现代生物技术可培育高青蒿素含量的植株。请回答以下相关问题:
(1)假设野生型青蒿白青秆(A)对紫红秆(a)为显性,稀裂叶(B)对分裂叶(b)为显性,两对性状独立遗传,则野生型青蒿最多有 种基因型;若F1代中白青秆、稀裂叶植株所占比例为3/8,则其杂交亲本的基因型组合为 ,该F1代中紫红秆、分裂叶植株所占比例为 。
(2)四倍体青蒿中青蒿素含量通常高于野生型青蒿,低温处理野生型青蒿正在有丝分裂的细胞会导致染色体不分离,从而获得四倍体细胞并发育成植株,推测低温处理导致细胞染色体不分离的原因是 ,四倍体青蒿与野生型青蒿杂交后代体细胞的染色体数为 。
(3)从青蒿中分离了cyp基因(下图为基因结构示意图),其编码的CYP酶参与青蒿素合成。①若该基因一条单链中(G+T)/(A+C)=2/3,则其互补链中(G+T)/(A+C)= 。②若该基因经改造能在大肠杆菌中表达CYP酶,则改造后的cyp基因编码区无 _____(填字母)。③若cyp基因的一个碱基对被替换,使CYP酶的第50位氨基酸由谷氨酸变成缬氨酸,则该基因突变发生的区段是 (填字母)。
中国科学家屠呦呦获得2015诺贝尔生理学或医学奖的获奖理由是“有关疟疾新疗法的发现”——可以显著降低疟疾患者死亡率的青蒿素。青蒿素是治疗疟疾的重要药物。利用雌雄同株的野生型青蒿(二倍体,体细胞染色体数为18),通过传统育种和现代生物技术可培育高青蒿素含量的植株。请回答以下相关问题:
(1)假设野生型青蒿白青秆(A)对紫红秆(a)为显性,稀裂叶(B)对分裂叶(b)为显性,两对性状独立遗传,则野生型青蒿最多有 种基因型;若F1代中白青秆、稀裂叶植株所占比例为3/8,则其杂交亲本的基因型组合为 ,该F1代中紫红秆、分裂叶植株所占比例为 。
(2)四倍体青蒿中青蒿素含量通常高于野生型青蒿,低温处理野生型青蒿正在有丝分裂的细胞会导致染色体不分离,从而获得四倍体细胞并发育成植株,推测低温处理导致细胞染色体不分离的原因是 ,四倍体青蒿与野生型青蒿杂交后代体细胞的染色体数为 。
(3)从青蒿中分离了cyp基因(题31图为基因结构示意图),其编码的CYP酶参与青蒿素合成。
①若该基因一条单链中(G+T)/(A+C)=2/3,则其互补链中(G+T)/(A+C)= 。
②若该基因经改造能在大肠杆菌中表达CYP酶,则改造后的cyp基因编码区无 (填字母)。
③若cyp基因的一个碱基对被替换,使CYP酶的第50位氨基酸由谷氨酸变成缬氨酸,则该基因突变发生的区段是 (填字母)。
下列两图为某哺乳动物细胞分裂过程中的坐标图和细胞的部分生命活动示意图。请据图回答下列问题:
(1)图甲中③阶段包括______________过程。
(2)图乙中c细胞中的染色体共含有__________条脱氧核苷酸链,在显微镜下可观察到存在同源染色体的是___________(填字母)细胞。
(3)基因的自由组合发生在图乙__________(填字母)细胞中,h细胞的名称是_______________,细胞分裂时星射线的形成与____________密切相关(填结构名称)。
(4)图乙中e细胞和f细胞的功能不同是___________的结果。如果e细胞变成了癌细胞,主要原因是_________________________发生了突变。
(5)在图甲中,如果在A点时将全部核DNA用放射性同位素标记,而分裂过程中所用的原料不含放射性同位素,则在GH段可检测到有放射性的脱氧核苷酸链占全部核苷酸链的比例为_________。
果蝇是遗传学常用的材料,回答下列有关遗传学问题。
(1)图1表示对雌果蝇眼型的遗传研究结果,由图分析,果蝇眼形由正常眼转变为棒眼是由于 导致的,其中雄性棒眼果蝇的基因型为 。
(2)研究人员构建了一个棒眼雌果蝇品系XdBXb,其细胞中的一条X染色体上携带隐性致死基因d,且该基因与棒眼基因B始终连在一起,如图2所示。在纯合(XdBXdB、XdBY)时能使胚胎致死。若棒眼雌果蝇(XdBXb)与野生正常眼雄果蝇(XbY)杂交,F1果蝇的表现型有三种,分别为棒眼雌果蝇、正常眼雄果蝇和 ,其中雄果蝇占 。若F1雌果蝇随机交配,则产生的F2中Xb频率为 。
(3)遗传学上将染色体上某一区段及其带有的基因一起丢失的现象叫缺失,若一对同源染色体中两条染色体在相同区域同时缺失叫缺失纯合子,若仅一条染色体发生缺失而另一条正常叫缺失杂合子。缺失杂合子的生活力降低但能存活,缺失纯合子导致个体胚胎期死亡。现有一红眼雄果蝇XAY与一白眼雌果蝇XaXa杂交,子代中出现一只白眼雌果蝇。请用杂交实验判断这只白眼雌果蝇的出现是由于缺失造成的,还是由于基因突变引起的?
实验设计:选该白眼雌果蝇与多只红眼雄果蝇杂交,观察统计子代中雌雄果蝇数量之比。
结果及结论:
①若子代中雌果蝇数与雄果蝇数比为 ,则为基因突变引起的。
②若子代中雌果蝇数与雄果蝇数比为 ,则是由于缺失造成的。
下图分别表示几种不同的育种方法. 请据图回答下列回答:
(1)A过程中,在指导蛋白质合成时, ③处的氨基酸由物种P的________改变成了____________。(缬氨酸GUC;谷氨酰胺CAG;天门冬氨酸GAC)
(2)B过程所示的育种方法叫做_____,该方法最常用的作法是在①处_______。
(3)C表示的育种方法是_____ , 若要从F2中选出最符合要求的新品种, 最简便的方法是_____。
(4)D过程中, ②常用的方法是__________ 。与C过程相比,D方法的突出优点是_________。
油菜和大麻是两种重要的经济作物,前者是雌雄同株植物,后者是雌雄异株植物。为了培育优良作物,科学家利用二者进行了以下相关研究。
资料一: 图甲表示油菜体内的 的中间代谢产物磷酸烯醇式丙酮酸(PEP)运输到种子后的两条转变途径。其中酶a和酶b分别由基因A和基因B控制合成。科学家根据这一机制培育出高产油 油菜,产油率由原来的35%提高到58% 。
资料二 图乙表示大麻的性染色体简图。图中同源部分(Ⅰ片段)基因互为等位,非同源部分( Ⅱ1、Ⅱ2片段) 基因不互为等位。
请分析资料回答问题:
(1)图甲中油脂或氨基酸的合成途径,说明基因可以通过 来控制代谢过程,从而影响生物性状。
(2)图丙表示基因B的转录过程:图中甲为 ;转录过程进行的方向是 。一般油菜体内只转录乙链,科学家诱导丙链也实现转录,结果形成了双链mRNA。由于该双链mRNA不能与 结合,因此不能合成酶b,但细胞能正常合成酶a,所以高产油油菜的油脂产量高。
(3)研究人员在一株大麻雌株中发现了一种遗传性症状甲。将该植株与正常雄株(无亲缘关系)杂交,得到的后代植株中,表现出症状甲的均为雄性。则症状甲属于 性状,控制该性状的基因位于 染色体上。
(4)d和e是两个位于大麻Ⅱ2片段上的隐性致死基因,即XdXd、XeXe、XdY、XeY的受精卵将不能发育。大麻雄株开花不结籽,雌株授粉后能结籽。运用杂交育种的方法,如何只得到雌性后代?请用遗传图解表示,并加以必要的文字说明(相对性状用死亡/存活表示;配子不作要求)。
(5)假设某物质在两个显性基因共同存在时才能合成,基因G、g位于I片断上,另一对等位基因(F、f)位于一对常染色体上。两个不能合成该物质的亲本杂交,子一代均能合成该物质,子二代中能合成该物质、不能合成该物质的比例为9﹕7,则两个亲本的基因型为____________________________。