如图所示,为一正方形边界的匀强磁场区域,磁场边界边长为,三个粒子以相同的速度从点沿方向射入,粒子1从点射出,粒子2从c点射出,粒子3从边垂直于磁场边界射出,不考虑粒子的重力和离子间的相互作用。根据以上信息,可以确定( )
A.粒子1带负电,粒子2不带电,粒子3带正电 |
B.粒子1和粒子3的比荷之比为2:1 |
C.粒子1和粒子2在磁场中运动时间之比为4:1 |
D.粒子3的射出位置与点相距 |
11.(18分)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴的方向夹角为.不计空气阻力,重力加速度为g,求
(1)电场强度E的大小和方向;
(2)小球从A点抛出时初速度v0的大小;
(3)A点到x轴的高度h.
25.(18分)如图所示,在0≤x≤a、o≤y≤范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内.己知粒子在磁场中做圆周运动的半径介于到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一,求最后离开磁场的粒子从粒子源射出时的:
(1)速度大小;
(2)速度方向与y轴正方向夹角正弦。
空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是( )
A.入射速度不同的粒子在磁场中的运动时间一定不同 |
B.入射速度相同的粒子在磁场中的运动轨迹一定相同 |
C.在磁场中运动时间相同的粒子,其运动轨迹一定相同 |
D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大 |
如图所示,匀强磁场的方向竖直向下,磁场中有光滑的水平桌面,在桌面上平放着内壁光滑、底部有带电小球的试管.在水平拉力F的作用下,试管向右匀速运动,带电小球能从试管口处飞出,则( )
A.小球带负电 |
B.小球运动的轨迹是一条抛物线 |
C.洛伦兹力对小球做正功 |
D.维持试管匀速运动的拉力F应逐渐增大 |
如图所示,在OA和OC两射线间存在着匀强磁场,∠AOC为30°,正负电子(质量、电荷量大小相同,电性相反)以相同的速度均从M点以垂直于OA的方向垂直射入匀强磁场,下列说法可能正确的是
A.若正电子不从OC 边射出,正负电子在磁场中运动时间之比可能为3∶1 |
B.若正电子不从OC 边射出,正负电子在磁场中运动时间之比可能为6∶1 |
C.若负电子不从OC 边射出,正负电子在磁场中运动时间之比可能为1∶1 |
D.若负电子不从OC 边射出,正负电子在磁场中运动时间之比可能为1∶6 |
如图所示,在xOy平面内存在着磁感应强度大小为B的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P( L,0)、Q(0, L)为坐标轴上的两个点.现有一电子从P点沿PQ方向射出,不计电子的重力,则.
A.若电子从P点出发恰好经原点O第一次射出磁场分界线,则电子运动的路程一定为 |
B.若电子从P点出发经原点O到达Q点,则电子运动的路程一定为πL |
C.若电子从P点出发经原点O到达Q点,则电子运动的路程可能为2πL |
D.若电子从P点出发经原点O到达Q点,则nπL(n为任意正整数)都有可能是电子运动的路程 |
如图所示,两匀强磁场方向相同,以虚线MN为理想边界,磁感应强度分别为B1、B2.今有一个质量为m、电荷量为e的电子从MN上的P点沿垂直于磁场的方向射入匀强磁场B1中,其运动轨迹为如图虚线所示的“心”形图线.则以下说法正确的是( )
A.电子的运行轨迹为PENCMDP |
B.电子运行一周回到P用时为T= |
C.B1=4B2 |
D.B1=2B2 |
如图所示,MN、PQ是平行金属板,板长为L两板间距离为d,在PQ板的上方有垂直纸面向里足够大的匀强磁场.一个电荷量为q,质量为m的带负电粒子以速度V0从MN板边缘且紧贴M点,沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场.不计粒子重力,求:
(1)两金属板间所加电压U的大小;
(2)匀强磁场的磁感应强度B的大小;
(3)当该粒子再次进入电场并再次从电场中飞出时的速度及方向.
如图所示,图中左边有一对平行金属板,两板相距为,电压为。两板之间有匀强磁场,磁感应强度大小为,方向与金属板面平行并垂直于纸面朝里;图中右边有一半径为、圆心为的圆形区域,区域内也存在匀强磁场,磁感应强度大小为,方向垂直于纸面朝里。一电荷量为的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径方向射入磁场区域,最后从圆形区域边界上的点射出,已知弧所对应的圆心角为,不计重力。
求:
(1)离子速度的大小;
(2)离子在圆形磁场区域内运动的时间;
(3)离子的质量。
如图所示,一个质量为,电荷量的带电微粒(重力忽略不计),从静止开始经U1=100 V电压加速后,水平进入两平行金属板间的偏转电场,偏转电场的电压U2=100 V.金属板长L=20cm,两板间距。求:
(1)微粒进入偏转电场时的速度大小;
(2)微粒射出偏转电场时的偏转角θ;
(3)若该匀强磁场的宽度为D=10 cm,为使微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大?
在半导体离子注入工艺中,初速度可忽略的磷离子P+和P3+,经电压为U的电场加速后,垂直进入磁感应强度大小为B、方向垂直纸面向里、有一定宽度的匀强磁场区域,如图所示.已知离子P+在磁场中转动θ=30°后从磁场右边界射出.在电场和磁场中运动时,离子P+和P3+
A.在电场中的加速度之比为1∶1
B.在磁场中运动的半径之比为∶1
C.在磁场中转过的角度之比为1∶2
D.离开电场区域时的动能之比为1∶3
如图所示,在一底边长为2L,θ=45°的等腰三角形区域内(O为底边中点)有垂直纸面向外的匀强磁场. 现有一质量为m,电量为q的带正电粒子从静止开始经过电势差为U的电场加速后,从O点垂直于AB进入磁场,不计重力与空气阻力的影响.
(1)粒子经电场加速射入磁场时的速度?
(2)磁感应强度B为多少时,粒子能以最大的圆周半径偏转后打到OA板?
(3)增大B,可延长粒子在磁场中的运动时间,求粒子在磁场中运动的极限时间.(不计粒子与AB板碰撞的作用时间,设粒子与AB板碰撞前后,电量保持不变并以相同的速率反弹)
如图所示,两个横截面分别为圆和正方形但磁感应强度均相同的匀强磁场,圆的直径d等于正方形的边长,两个电子分别以相同的速度飞入两个磁场区域,速度方向均与磁场方向垂直,进入圆形磁场区域的速度方向对准了圆心,进入正方形磁场区域的速度方向是沿一边的中垂线,则下面判断正确的是( )
A.两电子在两磁场中运动时半径相同 | B.两电子在两磁场中运动的时间一定不相同 |
C.进入圆形磁场区域的电子一定先飞离磁场 | D.两电子在两磁场中偏转角度可能相同 |
如图所示,在圆形区域内,存在垂直纸面向外的匀强磁场, ab是圆的一条直径。一带电粒子从a点射入磁场,速度大小为2v,方向与ab成时恰好从b点飞出磁场,粒子在磁场中运动的时间为t;若仅将速度大小改为v,则粒子在磁场中运动的时间为(不计带电粒子所受重力)( )
A.3t | B. | C. | D.2t |