如图所示,一带电粒子以某一速度在竖直平面内做直线运动,经过一段时间后进入一垂直于纸面向里、磁感应强度为B的圆形匀强磁场区域(图中未画出磁场区域),粒子飞出磁场后垂直电场方向进入宽为L的匀强电场. 电场强度大小为E,方向竖直向上. 当粒子穿出电场时速度大小变为原来的倍. 已知带电粒子的质量为m,电量为q,重力不计. 粒子进入磁场前的速度与水平方向成60°角,如图. 试解答:
(1)粒子带什么电?
(2)带电粒子在磁场中运动时速度多大?
(3)该圆形磁场区域的最小面积为多大?
如图所示,有三个宽度均相等的区域I、Ⅱ、Ⅲ;在区域I和Ⅲ内分别为方向垂直于纸面向外和向里的匀强磁场(虚线为磁场边界面,并不表示障碍物),区域I磁感应强度大小为B,某种带正电的粒子,从孔O1以大小不同的速度沿图示与夹角α=300的方向进入磁场(不计重力)。已知速度为v0和2v0时,粒子仅在区域I内运动且运动时间相同,均为t0。
(1)试求出粒子的比荷q/m、速度为2v0的粒子从区域I射出时的位置离O1的距离L;
(2)若速度为v的粒子在区域I内的运时间为t0/5,在图中区域Ⅱ中O1O2上方加竖直向下的匀强电场,O1O2 下方对称加竖直向上的匀强电场,场强大小相等,使速度为v的粒子每次均垂直穿过I、Ⅱ、Ⅲ区域的边界面并能回到O1点,则请求出所加电场场强大小与区域Ⅲ磁感应强度大小。
如图所示,在平面坐标系xoy内,第Ⅱ、Ⅲ象限内存在沿y轴正方向的匀强电场,第Ⅰ、Ⅳ象限内存在半径为L的圆形匀强磁场,磁场圆心在M(L,0)点,磁场方向垂直于坐标平面向外,一带正电粒子从第Ⅲ象限中的Q(-2L,-L)点以速度v0沿x轴正方向射出,恰好从坐标原点O进入磁场,从P(2L,0)点射出磁场。不计粒子重力。求:
(1)电场强度与磁感应强度的大小之比;
(2)粒子在磁场与电场中运动的时间之比。
如图所示,在矩形区域内有沿纸面向上的匀强电场,场强的大小;在矩形区域内有垂直纸面向里的匀强磁场,磁感应强度大小.已知,.在点处有一放射源,沿纸面向电场中各方向均匀地辐射出速率均为的某种带正电粒子,粒子质量,电荷量,粒子可以无阻碍地通过边界进入磁场,不计粒子的重力.求:
(1)粒子进入磁场的速度大小;
(2)粒子在磁场中做圆周运动的半径;
(3)边界FG上有粒子射出磁场的长度.
如图所示,一匀强磁场的磁感应强度大小为B,方向垂直纸面向里,磁场边界是半径为R的圆,AB为圆的直径.一质量为m、带电量为﹣q的带电粒子以某一速度垂直磁场方向从A点射入磁场,粒子的初速度方向与AB的夹角为60°.经过一段时间,粒子从磁场边界上的C点飞出(C点在图中未标出),C点到A点的距离为R.粒子重量不计,求粒子的速度大小和粒子在磁场中运动的时间.
许多仪器中可利用磁场控制带电粒子的运动轨迹.在如图所示的真空环境中,有一半径r=0.05m的圆形区域内存在磁感应强度B=0.2T的匀强磁场,其右侧相距d=0.05m处有一足够大的竖直屏.从S处不断有比荷=1×108C/kg的带正电粒子以速度v=2×106m/s沿SQ方向射出,经过磁场区域后打在屏上.不计粒子重力.求:
(1)粒子在磁场中做圆周运动的轨迹半径;
(2)绕通过P点(P点为SQ与磁场边界圆的交点)垂直纸面的轴,将该圆形磁场区域逆时针缓慢移动90°的过程中,粒子在屏上能打到的范围.
如图,长为L的一对平行金属板平行正对放置,间距,板间加上一定的电压.现从左端沿中心轴线方向入射一个质量为m、带电量为+q的带电微粒,射入时的初速度大小为v0.一段时间后微粒恰好从下板边缘P1射出电场,并同时进入正三角形区域.已知正三角形区域内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板平齐,底边BC与金属板平行.三角形区域的右侧也存在垂直纸面向里、范围足够大的匀强磁场B2,且B2=4B1.不计微粒的重力,忽略极板区域外部的电场.
(1)求板间的电压U和微粒从电场中射出时的速度大小和方向.
(2)微粒进入三角形区域后恰好从AC边垂直边界射出,求磁感应强度B1的大小.
(3)若微粒最后射出磁场区域时与射出的边界成30°的夹角,求三角形的边长.
如图所示,在x轴下方的区域内存在+y方向的匀强电场,电场强度为E.在x轴上方以原点O为圆心、半径为R的半圆形区域内存在匀强磁场,磁场的方向垂直于xoy平面向外,磁感应强度为B.﹣y轴上的A点与O点的距离为d,一个质量为m、电荷量为q的带正电粒子从A点由静止释放,经电场加速后从O点射入磁场,不计粒子的重力.
(1)求粒子在磁场中运动的轨道半径r;
(2)要使粒子进人磁场之后不再经过x轴,求电场强度的取值范围;
(3)改变电场强度,使得粒子经过x轴时与x轴成θ=30°的夹角,求此时粒子在磁场中的运动时间t及经过x轴的位置坐标值x0.
离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图1所示,截面半径为R的圆柱腔分为两个工作区。I为电离区,将氙气电离获得1价正离子,II为加速区,长度为L,两端加有电压,形成轴向的匀强电场。I区产生的正离子以接近0的初速度进入II区,被加速后以速度vM从右侧喷出。I区内有轴向的匀强磁场,磁感应强度大小为B,在离轴线R/2处的C点持续射出一定速度范围的电子。假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看)。电子的初速度方向与中心O点和C点的连线成α角(0<α<90◦)。推进器工作时,向I区注入稀薄的氙气。电子使氙气电离的最小速度为v0,电子在I区内不与器壁相碰且能到达的区域越大,电离效果越好。已知离子质量为M;电子质量为m,电量为e。(电子碰到器壁即被吸收,不考虑电子间的碰撞)。
求II区的加速电压及离子的加速度大小;
为取得好的电离效果,请判断I区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);
ɑ为90◦时,要取得好的电离效果,求射出的电子速率v的范围;
要取得好的电离效果,求射出的电子最大速率vm与α的关系。
真空中有如图所示矩形区域,该区域总高度为2h、总宽度为4h,其中上半部分有磁感应强度为B、垂直纸面向里的水平匀强磁场,下半部分有竖直向下的匀强电场,x轴恰为水平分界线,正中心恰为坐标原点O.在x=2.5h处有一与x轴垂直的足够大的光屏(图中未画出).质量为m、电荷量为q的带负电粒子源源不断地从下边界中点P由静止开始经过匀强电场加速,通过坐标原点后射入匀强磁场中.粒子间的相互作用和粒子重力均不计.
(1)若粒子在磁场中恰好不从上边界射出,求加速电场的场强E;
(2)若加速电场的场强E为(1)中所求E的4倍,求粒子离开磁场区域处的坐标值;
(3)若将光屏向x轴正方向平移,粒子打在屏上的位置始终不改变,则加速电场的场强E′多大?粒子在电场和磁场中运动的总时间多大?
如图所示,一个圆形有界匀强磁场半径为,磁场方向垂直纸面向外,一个质量为,带电量为的带正电的粒子(重力不计)由点沿水平方向以速度正对圆心射入有界磁场区域,从点射出时速度方向偏转了。求:
(1)该磁场的磁感应强度?
(2)若要把该磁场去掉,换成竖直向下的匀强电场,要求该粒子依然从点射出,请计算计算电场强度与磁感应强度的比值?
如图所示,在平面直角坐标系xoy的第四象限有垂直纸面向里的匀强磁场,一质量为m=5.0×10﹣8kg、电量为q=1.0×10﹣6C的带电粒子,从静止开始经U0=10V的电压加速后,从P点沿图示方向进入磁场,已知OP=30cm,(粒子重力不计,sin37°=0.6,cos37°=0.8),求:
(1)带电粒子到达P点时速度v的大小
(2)若磁感应强度B=2.0T,粒子从x轴上的Q点离开磁场,求QO的距离
(3)若粒子不能进入x轴上方,求磁感应强度B'满足的条件.
如图所示,A点距坐标原点的距离为l,坐标平面内有边界过A点和坐标原点O的圆形匀强磁场区域,磁场方向于垂直坐标平面向里。有一电子(质量为m、电荷量为e)从A点以初速度v0平行x轴正方向射入磁场区域,在磁场中运行,从x轴上的B 点射出磁场区域,此时速度方向与x轴的正方向之间的夹角为60°,求:
⑴磁场的磁感应强度大小;
⑵磁场区域的圆心O1的坐标;
⑶电子在磁场中运动的时间。
“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2。足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L。假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响。
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有2/3能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;
(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件。试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子。