如图所示,在以原点O为圆心、半径为R的半圆形区域内充满了磁感应强度为B的匀强磁场,x轴下方为一平行板电容器,其正极板与x轴重合且在O处开有小孔,两极板间距离为。现有电荷量为e、质量为m的电子在O点正下方负极板上的P点由静止释放。不计电子所受重力。
(1)若电子在磁场中运动一段时间后刚好从磁场的最右边缘处返回到x轴上,求加在电容器两极板间的电压。
(2)将两极板间的电压增大到第(1)问中电压的4倍,先在P处释放第一个电子,在这个电子刚到达O点时释放第二个电子,求第一个电子离开磁场时,第二个电子的位置坐标。
水平直线MN上方有垂直纸面向外的足够大的有界匀强磁场区域,磁感应强度为B,正、负电子同时从MN边界O点以与MN成300角的相同速度v射入该磁场区域(电子质量为m,电量为e) 经一段时间后从边界MN射出。求:
(1)它们从磁场中射出时,出射点间的距离;(画出电子运动的轨迹图)
(2)它们从磁场中射出的时间差。
如图,一匀强磁场磁感应强度为B,方向垂直纸面向里,其边界是半径为R的圆.MN为圆的一直径.在M点有一粒子源可以在圆平面内向不同方向发射质量m、电量-q速度为v的 粒子,粒子重力不计,其运动轨迹半径大于R.
(1)求粒子在圆形磁场中运动的最长时间(答案中可包含某角度,需注明该角度的正弦或余弦 值);
(2)试证明:若粒子沿半径方向入射,则粒子一定沿半径方向射出磁场.
如图所示,在空间中有一直角坐标系xOy,其第一象限内充满着两个方向不同的匀强磁场区域I和II,直线OP是它们的边界。区域I中的磁感应强度为2B,方向垂直纸面向里,区域II中的磁感应强度为B,方向垂直垂直纸面向外,边界上的P点坐标为(3L,3L),一质量为m,电荷量为+q的粒子从P点平行于y轴正方向以速度V0=射入区域I,经区域I偏转后进入区域II(忽略粒子重力),求:
粒子在I和II两磁场中做圆周运动的半径之比;
粒子在磁场中运动的总时间;
粒子离开磁场的位置坐标。
一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad长为L,现从ad中点O垂直于磁场射入一速度方向与ad边夹角为30°、大小为v0的带正电粒子,如下图所示.已知粒子电荷量为q,质量为m(重力不计):
若要求粒子能从ab边射出磁场,v0应满足什么条件?
若要求粒子在磁场中运动的时间最长,粒子应从哪一条边界处射出,出射点位于该边界上何处?最长时间是多少?
如图所示,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MO左侧存在电场强度为E、方向竖直向下的匀强电场,MO右侧某个区域存在磁感应强度为B、垂直纸面向里的匀强磁场,O点处在磁场的边界上.现有一群质量为m、电量为+q的带电粒子在纸面内以速度v()垂直于MO从O点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左.不计粒子的重力和粒子间的相互作用力,求:
速度最大的粒子自O点射入磁场至返回水平线POQ所用的时间.
磁场区域的最小面积.
根据你以上的计算可求出粒子射到PQ上的最远点离O的距离,请写出该距离的大小(只要写出最远距离的最终结果,不要求写出解题过程)
如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=60°,并接着沿半径方向进入一个垂直纸面向外的圆形匀强磁场区域,微粒射出磁场时的偏转角也为θ=60°。已知偏转电场中金属板长L=,圆形匀强磁场的半径R=,重力忽略不计。求:
带电微粒经U1=100V的电场加速后的速率;
两金属板间偏转电场的电场强度E;
匀强磁场的磁感应强度的大小。
如图所示,在一个圆形区域内,两个方向都垂直于纸面向外的匀强磁场分布在以直径A2A4为边界的两个半圆形区域I、Ⅱ中,直径A2A4与A1A3的夹角为60°,一质量为、带电荷量为的粒子以某一速度从I区的边缘点A2处沿与A2A3成30°角的方向射人磁场,再以垂直A2A4的方向经过圆心D进入Ⅱ区,最后再从A2处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求I区和Ⅱ区中磁感应强度B1和B2的大小(忽略粒子重力)。
如图所示,在x-o-y坐标系中,以(r,0)为圆心、r为半径的圆形区域内存在匀强磁场,磁场的磁感应强度大小为B,方向垂直于纸面向里。在y > r的足够大的区域内,存在沿y轴负方向的匀强电场,场强大小为E。从O点以相同速率向不同方向发射质子,质子的运动轨迹均在纸面内,且质子在磁场中运动的轨迹半径也为r。已知质子的电荷量为q,质量为m,不计质子所受重力及质子间相互作用力的影响。
求质子射入磁场时速度的大小;
若质子沿x轴正方向射入磁场,求质子从O点进入磁场到第二次离开磁场经历的时间;
若质子沿与x轴正方向成夹角θ的方向从O点射入第一象限的磁场中,求质子在磁场中运动的总时间。
如图所示,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MO左侧存在电场强度为E、方向竖直向下的匀强电场,MO右侧某个区域存在磁感应强度为B、垂直纸面向里的匀强磁场,O点处在磁场的边界上.现有一群质量为m、电量为+q的带电粒子在纸面内以速度v()垂直于MO从O点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左.不计粒子的重力和粒子间的相互作用力,求:
速度最大的粒子自O点射入磁场至返回水平线POQ所用的时间.
磁场区域的最小面积.
如图所示,相距为d、板间电压为U的平行金属板M、N间有垂直纸面向里、磁感应强度为B0的匀强磁场;在pOy区域内有垂直纸面向外、磁感应强度为B的匀强磁场;pOx区域为无场区.
一正离子沿平行于金属板、垂直磁场射入两板间并做匀速直线运动,从H(0,a)点垂直y轴进入第Ⅰ象限.
求离子在平行金属板间的运动速度;
若离子经Op上某点离开磁场,最后垂直x轴离开第Ⅰ象限,求离子在第Ⅰ象限磁场区域的运动时间;
要使离子一定能打在x轴上,则离子的荷质比应满足什么条件?
如图所示,第一象限的某个矩形区域内,有方向垂直于纸面向里的匀强磁场,磁场的左边界与y轴重合,第二象限内有互相垂直正交的匀强电场与匀强磁场,其磁感应强度=0.5T。一质量m=l×kg,电荷量的带正电的粒子以速度从x轴上的N点沿与x轴负方向成角方向射入第一象限,经P点进入第二象限内沿直线运动,一段时间后,粒子经x轴上的M点并与x轴负方向成角的方向飞出,M点坐标为(-0.1,0),N点坐标(0.3,0),不计粒子重力。求:
匀强电场的电场强度E的大小与方向;
匀强磁场的磁感应强度的大小;
匀强磁场矩形区城的最小面积。
如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=60°,并接着沿半径方向进入一个垂直纸面向外的圆形匀强磁场区域,微粒射出磁场时的偏转角也为θ=60°。已知偏转电场中金属板长L=,圆形匀强磁场的半径R=,重力忽略不计。求:
带电微粒经U1=100V的电场加速后的速率;
两金属板间偏转电场的电场强度E;
匀强磁场的磁感应强度的大小。
在水平光滑的绝缘桌面内建立如图所示的直角坐标系,第Ⅰ、Ⅱ象限有方向垂直桌面的匀强磁场.第Ⅲ、Ⅳ象限有大小为E的匀强电场,方向与x轴成45°。现把一个质量为m,电量为q的正电荷从坐标为(0,-b)的M点处由静止释放,电荷以一定的速度第一次经x轴进入磁场区域。经过一段时间,从坐标原点O再次回到电场区域。求:
电荷第一次经x轴进入磁场时的速度;
磁感应强度的大小;
粒子从M到O运动时间。
如图所示,左侧为两块长为L=10cm,间距cm的平行金属板,加U=的电压,上板电势高;现从左端沿中心轴线方向入射一个重力不计的带电微粒,微粒质量m=10-10kg,带电量q=+10-4C,初速度v0=105m/s;中间用虚线框表示的正三角形内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板平齐,BC边与金属板平行,AB边的中点P1恰好在下金属板的右端点;三角形区域的右侧也存在垂直纸面向里,范围足够大的匀强磁场B2,且B2=4B1;求;
带电微粒从电场中射出时的速度大小和方向;
带电微粒进入中间三角形区域后,要垂直打在AC边上,则该区域的磁感应强度B1是多少?
画出粒子在磁场中运动的轨迹,确定微粒最后出磁场区域的位置。