如图所示,在一个边长为l的菱形区域内,有垂直于纸面的匀强磁场,磁感应强度大小为B,菱形的一个锐角为60º。在菱形中心有一粒子源S,向纸面内各个方向发射速度大小相同的同种带电粒子,这些粒子电量为q、质量为m。如果要求菱形内的所有区域都能够有粒子到达,则下列粒子速度能够满足要求的有( )
A. | B. | C. | D. |
如图所示,平面直角坐标系第一象限存在竖直向上的匀强电场,距离原点O为3a处有一个竖直放置的荧光屏,荧光屏与x轴相交于Q点,且纵贯第四象限。一个顶角等于30°的直角三角形区域内存在垂直平面向里的匀强磁场,三角形区域的一条直角边ML与y轴重合,且ML被x轴垂直平分。已知ML的长度为6a,磁感应强度为B,电子束以相同的速度v0从LO区间垂直y轴和磁场方向射入直角三角形区域。从y=-2a射入磁场的电子运动轨迹恰好经过原点O,假设第一象限的电场强度大小为E=Bv0,试求:
(1)电子的比荷;
(2)电子束从+y轴上射入电场的纵坐标范围;
(3)从磁场中垂直于y轴射入电场的电子打到荧光屏上距Q点的最远距离。
如图所示,粒子源S能在图示纸面内的360°范围内发射速率相同、质量为m、电量为+q的同种粒子(重力不计),MN是足够大的竖直挡板,S到板的距离为L,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度为B,求:
(1)粒子速度至少为多大,才能有粒子到达挡板?
(2)若S发射的粒子速率为,则挡板能被粒子击中部分的长度为多少?
(3)若S发射的粒子速率为,粒子到达挡板的最短时间是多少?
如图所示,半径为的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为,速度大小为。则粒子在磁场中运动的最长时间为
A. | B. | C. | D. |
来自宇宙的质子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些质子在进入地球周围的空间时,将( )
A.竖直向下沿直线射向地面 | B.相对于预定地面向东偏转 |
C.相对于预定点稍向西偏转 | D.相对于预定点稍向北偏转 |
如图所示,在x>O、y>O的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B.现有一质量为m、电量为q的带正电粒子,从在x轴上的某点P沿着与x轴成30°角的方向射入磁场。不计重力的影响,则下列有关说法中正确的是
A.粒子在磁场中运动所经历的时间可能为
B.粒子在磁场中运动所经历的时间可能为
C.只要粒子的速率合适,粒子就可能通过坐标原点
D.粒子一定不可能通过坐标原点
如图所示,一个质量为m、电量为+q的带电粒子从A孔以初速度v0垂直于AD进入磁感应强度为B的匀强磁场中,并恰好从C孔垂直于OC射入匀强电场中,电场方向跟OC平行,OC⊥AD,最后打在D点,且。若已知m,q,v0,B,不计重力,试求:
(1)粒子由A运动到D点所需时间;
(2)粒子抵达D点时的动能.
坐标原点O处有一点状的放射源,它向xoy平面内的x轴上方各个方向发射带正电的同种粒子,速度大小都是v0,在0<y<d的区域内分布有指向y轴正方向的匀强电场,场强大小为,其中q与m分别为该种粒子的电量和质量;在的区域内分布有垂直于xoy平面的匀强磁场。ab为一块很大的平面感光板,放置于处,如图所示。观察发现此时恰无粒子打到ab板上。(不考虑粒子的重力)
(1)求粒子刚进入磁场时的动能;
(2)求磁感应强度B的大小;
(3)将ab板平移到什么位置时所有粒子均能打到板上?并求出此时ab板上被粒子打中的区域的长度。
两个电荷量分别为q和﹣q的带电粒子a、b分别以速度和射入匀强磁场,两粒子的入射方向与磁场边界的夹角分别为30°和60°。磁场宽度为d,两粒子同时由A点出发,同时到达B点,如图所示,则( )
A.a粒子带负电,b粒子带正电 |
B.两粒子的轨迹半径之比 |
C.两粒子的质量之比 |
D.两粒子的速度大小之比 |
如图所示,在半径为R的圆形匀强磁场,磁感应强度为B,方向垂直于圆平面向里,PQ为磁场圆的一直径。比荷相同不计重力的负离子a和b以相同速率,由P点在纸平面内分别与PQ夹和沿PQ射入磁场中发生偏转后,又飞出磁场,则下列说法正确的是( )
A.离子射出磁场时动能一定相等 |
B.离子射出磁场时速度一定不同 |
C.如果离子a从Q点射出磁场,则离子b在磁场中的运动半径为R |
D.如果离子b射出磁场时偏转角为900, 则离子a和b在磁场中的运动时间比为4:3 |
如图a、b、c为三个完全相同的带正电荷的油滴,在真空中从相同高度由静止下落到同一水平面,a下落中有水平匀强电场,b下落中有水平向里的匀强磁场,三油滴落地时间设为ta、tb、tc,落地时速度分别va、vb、vc,则( )
A.ta=tb=tc,va=vb=vc | B.ta=tb=tc,va>vb=vc |
C.tb>ta=tc,va=vb=vc | D.tb>ta=tc,va>vc=vb |
带电粒子的质量 m=1.7×10-27kg,电荷量 q=1.6×10-19C,以速度 v =3.2×106m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B=0.17 T,磁场的宽度L=10 cm,如图所示。不计重力,求:
(1)带电粒子离开磁场时的偏转角θ多大?
(2)带电粒子在磁场中运动多长时间?
如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进人磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是( )
A.,正电荷 | B.,正电荷 | C.,负电荷 | D.,负电荷 |
如图,纸面内有E、F、G三点,∠GEF=30°,∠EFG=135°.空间有一匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.先使带有电荷量为q(q>0)的点电荷a在纸面内垂直于EF从F点射出,其轨迹经过G点;再使带有同样电荷量的点电荷b在纸面内与EF成一定角度从E点射出,其轨迹也经过G点.两点电荷从射出到经过G点所用的时间相同,且经过G点时的速度方向也相同.已知点电荷a的质量为m,轨道半径为R,不计重力.求:
(1)点电荷a从射出到经过G点所用的时间;
(2)点电荷b的速度大小.