如图所示,真空中相距d="5" cm的两块平行金属板A、B与电源连接(图中未画出),其中B板接地(电势为零),A板电势变化的规律如图所示.将一个质量,电量的带电粒子从紧临B板处释放,不计重力.求:
(1)在t=0时刻释放该带电粒子,释放瞬间粒子加速度的大小;
(2)若A板电势变化周期,在t=0时将带电粒子从紧临B板处无初速释放,粒子到达A板时动量的大小;
(3)A板电势变化频率多大时,在到时间内从紧临B板处无初速释放该带电粒子,粒子不能到达A板.
如图所示,真空中水平放置的两个相同极板Y和Y'长为L,相距d,足够大的竖直屏与两板右侧相距b.在两板间加上可调偏转电压U,一束质量为m、带电量为+q的粒子(不计重力)从两板左侧中点A以初速度v0沿水平方向射入电场且能穿出.
(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O点;
(2)求两板间所加偏转电压U的范围;
(3)求粒子可能到达屏上区域的长度.
如图所示,a、b、c是一条电场线上的三个点,电场线的方向由a到c,a、b间距离等于b、c间距离。用Ua、Ub、Uc和Ea、Eb、Ec分别表示a、b、c三点的电势和电场强度,可以判定:
A.Ua>Ub>Uc | B.Ua—Ub=Ub—Uc |
C.Ea>Eb>Ec | D.Ea=Eb=Ec |
两个大小相同的小球带有同种电荷(可看作点电荷),质量分别为m1和m2,带电量分别是q1和q2,用两等长的绝缘线悬挂后,因静电力而使两悬线张开,分别与竖直方向成夹角α1和α2,如图9-36-6所示,若α1=α2,则下述结论正确的是( )
A.q1一定等于q2 | B.一定满足 |
C.m1一定等于m2 | D.必定同时满足q1=q2,m1=m2 |
图中的实线表示电场线,虚线表示只受电场力作用的带正电粒子的运动轨迹,粒子先经过点,再经过点,可以判定()
A. | 点的电势大于 点的电势 |
B. | 点的电势小于 点的电势 |
C. | 粒子在 点受到的电场力大于在 点受到的电场力 |
D. | 粒子在 点受到的电场力小于在 点受到的电场力 |
如图所示,叠放在一起的A、B两绝缘小物块放在水平向右的匀强电场中,其中B带正电q而A不带电.它们一起沿绝缘水平面以某一速度匀速运动.现突然使B带电量消失,同时A带上正电q,则A、B的运动状态可能为( )
A.一起匀速运动 | B.一起加速运动 |
C.A匀加速,B匀减速 | D.A匀加速,B匀速 |
如图所示,质量为m,电荷量为q的带电粒子从平行板电容器左侧一端的中点处以速度沿垂直于电场线方向进入电容器,恰能从下边缘处飞出,飞出时速度大小为,若其他条件不变,而在电容器内加上垂直纸面向里的匀强磁场,则带电粒子恰能从上极板边缘处飞出,飞出时速度大小为,不计粒子的重力,则以下速度大小的关系正确的是( )
A. | B. |
C. | D. |
如图甲所示,三个相同的金属板共轴排列,它们的距离与宽度均相同,轴线上开有小孔,在左边和右边两个金属板上加电压U后,金属板间就形成匀强电场;有一个比荷 C/kg的带正电的粒子从左边金属板小孔轴线A处由静止释放,在电场力作用下沿小孔轴线射出(不计粒子重力),其图像如图乙所示,则下列说法正确的是( )
A.右侧金属板接电源的正极 |
B.所加电压U="100" V |
C.乙图中的="2" m/s |
D.通过极板间隙所用时间比为 |