有一辆汽车的质量为2×103kg,额定功率为9×104W。汽车在平直路面上由静止开始运动,所受阻力恒为3×103N。在开始起动的一段时间内汽车以1m/s2的加速度匀加速行驶。从开始运动到停止加速所经过的总路程为270m。求:
(1)汽车匀加速运动的时间;
(2)汽车能达到的最大速度;
(3)汽车从开始运动到停止加速所用的时间。
四川某中学物理兴趣小组同学开展研究性学习,对常在火车站看到载重列车启动时,机车首先要倒退的问题进行调查,最后得出结论:因为机车和车厢与铁轨之间的最大静摩擦力大于它们之间的动摩擦力,若机车不倒退直接启动,启动以后机车和车厢与铁轨之间的摩擦力由静摩擦力变为动摩擦力,当列车加速到一定的速度后,列车的机车就必须减少牵引力使列车匀速直线运动,资源不能得到充分的利用,所以载重列车常常采用先倒退的启动方式启动。现假设有一列载重列车,若它不倒退以恒定的牵引力直接启动,机车的牵引力能带动49节车厢(不含机车),那么它利用倒退后用同样大小的恒定牵引力启动,该机车启动59节同样质量的车厢以后,恰好做匀速直线运动,已知机车与各节车厢的质量均为m,机车和各节车厢与铁轨之间的动摩擦力为,假设机车倒退后,各节车厢之间的挂钩离开相同的距离,机车加速后,每拉动一节车厢的瞬间可近似地认为满足动量守恒定律的条件。求:
(1)每一节车厢与铁轨之间的最大静摩擦力?
(2)列车采用机车倒退的方式启动后做匀速直线运动的速度?(最终结果可以用根式表示)
光滑的斜面倾角θ=30º,斜面底端有弹性挡板P,长2l、质量为M的两端开口的圆筒置与斜面上,下端在B点处, PB=2l,圆筒的中点处有一质量为m的活塞,M=m.活塞与圆筒壁紧密接触,最大静摩擦力与滑动摩擦力相等为f=mg/2.每当圆筒中的活塞运动到斜面上AB区间时总受到一个沿斜面向上F=mg的恒力作用,AB=l.现由静止开始从B点处释放圆筒.
(1)求活塞位于AB区间之上和进入AB区间内时活塞的加速度大小;
(2)求圆筒第一次与挡板P碰撞前的速度和经历的时间;
(3)圆筒第一次与挡板P瞬间碰撞后以原速度大小返回,求圆筒沿斜面上升到最高点的时间.
如图所示,水平轨道上轻弹簧左端固定,弹簧处于自然状态时,其右端位于P点.现用一质量m=0.1kg的小物块 (可视为质点)将弹簧压缩后释放,物块经过P点时的速度v0=18m/s,经过水平轨道右端Q点后恰好沿光滑半圆轨道的切线进入竖直固定的圆轨道,最后物块经轨道最低点A抛出后落到B点。若物块与水平轨道间的动摩擦因数μ=0.15,R=l=1m,A到B的竖直高度h=1.25m,取g=10m/s2.
(1) 求物块到达Q点时的速度大小;
(2) 判断物块经过Q点后能否沿圆周轨道运动;
(3) 求物块水平抛出的位移大小.
如图所示,在倾角为θ的固定的光滑斜面上有两个用轻质弹簧相连接的物块A 、B .它们的质量都为m,弹簧的劲度系数为k , C为一固定挡板。系统处于静止状态,开始时各段绳都处于伸直状态。现在挂钩上挂一物体P,并从静止状态释放,已知它恰好使物体B离开固定档板C, 但不继续上升(设斜面足够长和足够高)。求:
(1)物体P的质量多大?
(2)物块B 刚要离开固定档板C时,物块A 的加速度多大?
一质量m=0.5kg的滑块以一定的初速度冲上一倾角为30º足够长的斜面,某同学利用DIS实验系统测出了滑块冲上斜面过程中多个时刻的瞬时速度,如图所示为通过计算机绘制出的滑块上滑过程的v-t图。求:(g取10m/s2)
(1)滑块与斜面间的动摩擦因数;
(2)判断滑块最后能否返回斜面底端?若能返回,求出返回斜面底端时的动能;若不能返回,求出滑块停在什么位置。
如图(a)所示,光滑的平行长直金属导轨置于水平面内,间距为L、导轨左端接有阻值为R的电阻,质量为m的导体棒垂直跨接在导轨上.导轨和导体棒的电阻均不计,且接触良好.在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为B.开始时,导体棒静止于磁场区域的右端,当磁场以速度v1匀速向右移动时,导体棒随之开始运动,同时受到水平向左、大小为f的恒定阻力,并很快达到恒定速度,此时导体棒仍处于磁场区域内.
(1)求导体棒所达到的恒定速度v2;
(2)为使导体棒能随磁场运动,阻力最大不能超过多少?
(3)导体棒以恒定速度运动时,单位时间内克服阻力所做的功和电路中消耗的电功率各为多大?
(4)若t=0时磁场由静止开始水平向右做匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运动,其v﹣t关系如图(b)所示,已知在时刻t导体棒瞬时速度大小为vt,求导体棒做匀加速直线运动时的加速度大小.
如图(a)所示,木板OA可绕轴O在竖直平面内转动,某研究小组利用此装置探索物块在方向始终平行于斜面、大小为F=8N的力作用下加速度与斜面倾角的关系。已知物块的质量m=1kg,通过DIS实验,得到如图(b)所示的加速度与斜面倾角的关系图线。若物块与木板间的动摩擦因数为0.2,假定物块与木板间的最大静摩擦力始终等于滑动摩擦力,g取10m/s2。试问:
(1)图(b)中图线与纵坐标交点ao多大?
(2)图(b)中图线与θ轴交点坐标分别为θ1和θ2,木板处于该两个角度时的摩擦力指向何方?说明在斜面倾角处于θ1和θ2之间时物块的运动状态。
(3)θ1为多大?
(4)如果木板长L=2m,倾角为37°,物块在F的作用下由O点开始运动,为保证物块不冲出木板顶端,力F最多作用多长时间?(取sin37°=0.6,cos37°=0.8)
如图所示,在一光滑水平的桌面上,放置一质量为M.宽为L的足够长“U”形框架,其ab部分电阻为R,框架其他部分的电阻不计.垂直框架两边放一质量为m.电阻为R的金属棒cd,它们之间的动摩擦因数为μ,棒通过细线跨过一定滑轮与劲度系数为k.另一端固定的轻弹簧相连.开始弹簧处于自然状态,框架和棒均静止.现在让框架在大小为2 μmg的水平拉力作用下,向右做加速运动,引起棒的运动可看成是缓慢的.水平桌面位于竖直向上的匀强磁场中,磁感应强度为B.问:
(1)框架和棒刚开始运动的瞬间,框架的加速度为多大?
(2)框架最后做匀速运动(棒处于静止状态)时的速度多大?
(3)若框架通过位移s后开始匀速运动,已知弹簧弹性势能的表达式为(x为弹簧的形变量),则在框架通过位移s的过程中,回路中产生的电热为多少?
如图所示,以A、B和C、D为断点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑的地面上,左端紧靠B点,上表面所在平面与两半圆分别相切于B、C两点,一物块(视为质点)被轻放在水平匀速运动的传送带上E点,运动到A点时刚好与传送带速度相同,然后经A点沿半圆轨道滑下,再经B点滑上滑板,滑板运动到C点时被牢固粘连。物块可视为质点,质量为m,滑板质量为M=2m,两半圆半径均为R,板长l=6.5R,板右端到C点的距离L在R<L<5R范围内取值,E点距A点的距离s=5R,物块与传送带、物块与滑板间的动摩擦因数均为,重力加速度g已知。
(1)求物块滑到B点的速度大小;
(2)求物块滑到B点时所受半圆轨道的支持力的大小;
(3)试讨论物块从滑上滑板到离开右端的过程中,克服摩擦力做的功与L的关系;并判断物块能否滑到CD轨道的中点。