如图所示,一质点在重力和水平恒力作用下,速度从竖直方向变为水平方向,在此过程中,质点的( )
A.机械能守恒 | B.机械能不断增加 |
C.重力势能不断减小 | D.动能先减小后增大 |
如图所示,固定在水平面上的光滑斜面倾角为30,质量分别为M、m的两个物体通过细绳及轻弹簧连接于光滑轻滑轮两侧,斜面底端有一与斜面垂直的挡板.开始时用手按住物体M,此时M距离挡板的距离为s,滑轮两边的细绳恰好伸直,且弹簧处于原长状态.已知M = 2m,空气阻力不计.松开手后,关于二者的运动下列说法中正确的是
A.M和m组成的系统机械能守恒 |
B.当M的速度最大时,m与地面间的作用力为零 |
C.若M恰好能到达挡板处,则此时m的速度为零 |
D.若M恰好能到达挡板处,则此过程中重力对M做的功等于弹簧弹性势能的增加量与物体m的机械能增加量之和 |
某课外活动小组利用竖直上抛运动验证机械能守恒定律.
(1)某同学用20分度游标卡尺测量小球的直径,读数如图甲所示,小球直径为 cm.图乙所示弹射装置将小球竖直向上抛出,先后通过光电门A、B,计时装置测出小球通过A、B的时间分别为2.55ms、5.15ms,由此可知小球通过光电门A、B时的速度分别为vA、vB,其中vA= m/s.
(2)用刻度尺测出光电门A、B间的距离h,已知当地的重力加速度为g,只需比较 和 是否相等,就可以验证机械能是否守恒(用题目中涉及的物理量符号表示).
(3)通过多次的实验发现,小球通过光电门A的时间越短,(2)中要验证的两数值差越大,试分析实验中产生误差的主要原因是 .
我国发射的"嫦娥三号"登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落。已知探测器的质量约为,地球质量约为月球的81倍,地球半径为月球的3.7倍,地球表面的重力加速度大小约为。则次探测器()
A. | 在着陆前瞬间,速度大小约为 |
B. | 悬停时受到的反冲作用力约为 |
C. | 从离开近月圆轨道到着陆这段时间内,机械能守恒 |
D. | 在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度 |
如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统从子弹开始射入木块到弹簧压缩到最短的整个过程中( )
A.动量守恒,机械能守恒 |
B.动量不守恒,机械能不守恒 |
C.动量守恒,机械能不守恒 |
D.动量不守恒,机械能守恒 |
亚里士多德(前384—前322年),古希腊斯吉塔拉人,世界古代史上最伟大的哲学家、科学家和教育家之一。但由于历史的局限性,亚里士多德的有些认识是错误的。为了证明亚里士多德的一个结论是错误的,一位科学家设计了一个理想实验,下图是这个理想实验的示意图。甲图是将两个斜面对接,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面;图乙是减小第二个斜面的倾角,小球在这个斜面上几乎要达到原来的高度;……。由此得到推论:图丙中,在没有摩擦等阻碍时,小球将永远运动下去。
设计这个理想实验的科学家是 ,这个理想实验说明亚里士多德的力是_______物体运动的原因的结论是错误的。
“验证机械能守恒定律”的实验可以采用如下图所示的(甲)或(乙)方案来进行。
⑴比较这两种方案,___________(填“甲”或“乙”)方案好些,理由是_____________ _。
⑵如图(丙)是该实验中得到的一条纸带,测得每两个计数点间的距离如图所示,已知每两个计数点之间的时间间隔T=0.1s。物体运动的加速度a=___________m/s2(保留两位有效数字);该纸带是采用__________(填“甲”或“乙”)实验方案得到的。
⑶图(丁)是采用(甲)方案时得到的一条纸带,在计算图中N点速度时,几位同学分别用下列不同的方法进行,其中正确的是:( )
A. | B. |
C. | D. |
如图所示,轻杆AB长l,两端各连接一个小球(可视为质点),两小球质量关系为,轻杆绕距B端处的O轴在竖直平面内顺时针自由转动。当轻杆转至水平位置时,A球速度为,则在以后的运动过程中
A.A球机械能守恒 |
B.当B球运动至最低点时,球A对杆作用力等于0 |
C.当B球运动到最高点时,杆对B球作用力等于0 |
D.A球从图示位置运动到最低点的过程中,杆对A球做功等于0 |
如图所示,离水平地面一定高处水平固定一内壁光滑的圆筒,筒内固定一轻质弹簧,弹簧处于自然长度。现将一小球从地面以某一初速度斜向上抛出,刚好能水平进入圆筒中,不计空气阻力。下列说法中正确的是
A.弹簧获得的最大弹性势能等于小球抛出时的动能 |
B.小球从抛出到将弹簧压缩到最短的过程中小球的机械能守恒 |
C.小球抛出的初速度大小仅与圆筒离地面的高度有关 |
D.小球从抛出点运动到圆筒口的时间与小球抛出时的角度无关 |
如图所示,轻杆AB长l,两端各连接一个小球(可视为质点),两小球质量关系为,轻杆绕距B端处的O轴在竖直平面内顺时针自由转动。当轻杆转至水平位置时,A球速度为,则在以后的运动过程中
A.A球机械能守恒 |
B.当B球运动至最低点时,球A对杆作用力等于0 |
C.当B球运动到最高点时,杆对B球作用力等于0 |
D.A球从图示位置运动到最低点的过程中,杆对A球做功等于0 |
质量相等的两个质点A、B在拉力作用下从同一地点沿同一直线竖直向上运动的v-t图像如图所示,下列说法正确的是
A.t2时刻两个质点在同一位置
B.0- t2时间内两质点的平均速度相等
C.0- t2时间内A质点处于超重状态
D.在t1- t2时间内质点B的机械能守恒
如图所示,光滑半圆弧轨道半径为R,质量为m的小球自圆弧左端处以某一水平的初速度抛出,恰好落到圆弧轨道的最低点,当小球与轨道相碰时,垂直轨道的速度瞬时变为0,切向速度不变,则:
A.小球与轨道相碰后,小球能上升的最大高度 |
B.小球做平抛运动的初速度 |
C.小球再次返回圆弧的最低点的压力 |
D.在全过程中小球机械能守恒 |
距沙坑高h=7m处,以v0=10m/s的初速度竖直向上抛出一个质量为0.5kg的物体,物体落到沙坑并陷入沙坑d=0.4m深处停下.不计空气阻力,重力加速度g=10m/s2.求:
(1)物体上升到最高点时离抛出点的高度H;
(2)物体在沙坑中受到的平均阻力f大小是多少?
在用如图甲所示的装置“验证机械能守恒定律”的实验中,打点计时器接在频率为f=50Hz的交流电源上,从实验中打出的几条纸带中选出一条理想纸带,如图乙所示,O点为第一个点,A、B、C、D点时从合适位置选取的连续的四个点,各点距第一点O的距离分别为,,,。已知重锤的质量为m,从打下第一个点O到打下C点的过程中,重锤重力势能的减少量=____________,重锤动能的增加量=_____________(结果保留2位有效数字,)。
下图中,固定的光滑竖直杆上套有一质量为m的圆环,圆环与水平放置轻质弹簧一端相连,弹簧另一端固定在墙壁上的A点,图中弹簧水平时恰好处于原长状态。现让圆环从图示位置(距地面高度为h)由静止沿杆滑下,滑到杆的底端B时速度恰好为零。则在圆环下滑至底端的过程中
A.圆环的机械能守恒 |
B.弹力对圆环做负功,大小为mgh |
C.圆环所受合力做功为零 |
D.圆环到达B时弹簧弹性势能为mgh |