如图所示是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中表示正确的是( )
如图所示,线圈焊接车间的传送带不停地传送边长为L,质量为4kg,电阻为5Ω的正方形单匝金属线圈,线圈与传送带之间的滑动摩擦系数μ=。传送带总长8L,与水平面的夹角为θ=30°,始终以恒定速度2m/s匀速运动。在传送带的左端虚线位置将线圈无初速地放到传送带上,经过一段时间,线圈达到与传送带相同的速度,线圈运动到传送带右端掉入材料筐中(图中材料筐未画出)。已知当一个线圈刚好开始匀速运动时,下一个线圈恰好放到传送带上。线圈匀速运动时,相邻两个线圈的间隔为L。线圈运动到传送带中点开始以速度2m/s 通过一固定的匀强磁场,磁感应强度为5T、磁场方向垂直传送带向上,匀强磁场区域宽度与传送带相同,沿传送带运动方向的长度为3L。重力加速度g=10m/s2。求:
(1)正方形线圈的边长L;
(2)每个线圈通过磁场区域产生的热量Q;
(3)在一个线圈通过磁场的过程,电动机对传送带做功的功率P。
如图所示,MN、PQ为竖直放置的两根足够长平行光滑导轨,相距为d=0.5m,M、P之间连一个R=1.5Ω的电阻,导轨间有一根质量为m=0.2kg,电阻为r=0.5Ω的导体棒EF,导体棒EF可以沿着导轨自由滑动,滑动过程中始终保持水平且跟两根导轨接触良好.整个装置的下半部分处于水平方向且与导轨平面垂直的匀强磁场中,磁感应强度为B=2T.取重力加速度g=10m/s2,导轨电阻不计.若导体棒EF从磁场上方某处沿导轨下滑,进入匀强磁场时速度为v=2m/s,
(1)求此时通过电阻R的电流大小和方向
(2)求此时导体棒EF的加速度大小.
如图所示,倾角θ=30°、宽为L=1m的足够长的U形光滑金属导轨固定在磁感应强度B=1T、范围足够大的匀强磁场中,磁场方向垂直导轨平面斜向上。现用一平行于导轨的F牵引一根质量m=0.2kg、电阻R=1Ω的导体棒ab由静止开始沿导轨向上滑动;牵引力的功率恒定为P=90W,经过t=2s导体棒刚达到稳定速度v时棒上滑的距离s=11.9m。导体棒ab始终垂直导轨且与导轨接触良好,不计导轨电阻及一切摩擦,取g=10m/s2。求:
(1)从开始运动到达到稳定速度过程中导体棒产生的焦耳热Q1;
(2)若在导体棒沿导轨上滑达到稳定速度前某时刻撤去牵引力,从撤去牵引力到棒的速度减为零的过程中通过导体棒的电荷量为q=0.48C,导体棒产生的焦耳热为Q2=1.12J,则撤去牵引力时棒的速度v′多大?
如图所示,电阻不计、间距L=1m、足够长的光滑金属导轨ab、cd与水平面成θ=37°角,导轨平面矩形区域efhg内分布着磁感应强度的大小B=1T,方向垂直导轨平面向上的匀强磁场,边界ef、gh之间的距离D=1.4m。现将质量m=0.1kg、电阻的导体棒P、Q相隔Δt=0.2s先后从导轨顶端由静止自由释放,P、Q在导轨上运动时始终与导轨垂直且接触良好,P进入磁场时恰好匀速运动,Q穿出磁场时速度为2.8m/s。已知重力加速度g=10m/s2,sin37°=0.6,求
(1)导轨顶端与磁场上边界ef之间的距离S;
(2)从导体棒P释放到Q穿出磁场的过程,回路中产生的焦耳热Q总。
如图所示,在光滑绝缘水平面上,一边长为10cm、电阻为1Ω、质量为0.1kg的正方形金属线框abcd以m/s的速度向一有界磁场滑去,磁场方向与线框平面垂直,磁感应强度大小为0.5T,当线框全部进入磁场时,线框中已放出了1.8J的热量。则当线框ab边刚出磁场的瞬间,线框速度大小为 m/s;线框中电流的瞬时功率为 W。
如图甲所示,放置在水平桌面上的两条光滑导轨间的距离L=1m,质量m=1kg的光滑导体棒放在导轨上,导轨左端与阻值R=4Ω的电阻相连,导体棒和导轨的电阻不计。导轨所在位置有磁感应强度为B=2T的匀强磁场,磁场的方向垂直导轨平面向下,现在给导体棒施加一个水平向右的恒定拉力F,并每隔0.2s测量一次导体棒的速度,乙图是根据所测数据描绘出导体棒的v-t图象。(设导轨足够长)求:
(1)力F的大小。
(2)t=1.2s时,导体棒的加速度。
(3)估算1.6s内电阻上产生的热量。
如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=0.30 m.导轨电阻忽略不计,其间连接有固定电阻R=0.40 Ω.导轨上停放一质量m=0.10 kg、电阻r=0.20 Ω的金属杆ab,整个装置处于磁感应强度B=0.50 T的匀强磁场中,磁场方向竖直向下.用一外力F沿水平方向拉金属杆ab,使之由静止开始运动,电压传感器可将R两端的电压U即时采集并输入电脑,获得电压U随时间t变化的关系如图乙所示.
(1)利用上述条件证明金属杆做匀加速直线运动,并计算加速度的大小;
(2)求第2 s末外力F的瞬时功率;
(3)如果水平外力从静止开始拉动杆2 s所做的功W=0.35 J,求金属杆上产生的焦耳热
如图所示,长为L的金属杆OA绕过O点的轴在垂直于纸面向里的匀强磁场中沿顺时针方向匀速转动,角速度为ω,磁感应强度为B,磁场范围足够大,则OA杆产生感应电动势的大小为______ ,O、A两点电势高低关系为φA_____φO.(填“>”或“<”)
如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L,左端接有阻值R的电阻,一质量m、长度L的金属棒MN放置在导轨上,棒的电阻为r,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度为B,棒在水平向右的外力作用下,由静止开始做加速运动,保持外力的功率为P不变,经过时间t导体棒最终做匀速运动。求:
(1)导体棒匀速运动时的速度是多少?
(2)t时间内回路中产生的焦耳热是多少?
如图,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度打下B 1随时间t的变化关系为 ,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B 0 , 方向也垂直于纸面向里。某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN,此后向右做匀速运动。金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计。求
(1)在 到 时间间隔内,流过电阻的电荷量的绝对值;
(2)在时刻 穿过回路的总磁通量和金属棒所受外加水平恒力的大小。
如图所示,宽度的足够长的U形金属框架水平放置,框架中连接电阻,框架处在竖直向上的匀强磁场中,磁感应强度,框架导轨上放一根质量为、电阻,的金属棒,棒与导轨间的动摩擦因数,现用功率恒定的牵引力使棒从静止开始沿导轨运动(棒始终与导轨接触良好且垂直),当整个回路产生热量时刚好获得稳定速度,此过程中,通过棒的电量(框架电阻不计,取)求:
(1)当导体棒的速度达到时,导体棒上两点电势的高低?导体棒两端的电压?导体棒的加速度?
(2)导体棒稳定的速度?
(3)导体棒从静止到刚好获得稳定速度所用的时间?
如图所示,在竖直方向上有四条间距均为L=0.5 m的水平虚线L1、L2、L3、L4,在L1L2之间、L3L4之间存在匀强磁场,大小均为1 T,方向垂直于纸面向里。现有一矩形线圈abcd,长度ad=3 L,宽度cd=L,质量为0.1 kg,电阻为1Ω,将其从图示位置静止释放(cd边与L1重合),cd边经过磁场边界线L3时恰好做匀速直线运动,整个运动过程中线圈平面始终处于竖直方向, cd边水平。(g="10" m/s2)则( )
A.cd边经过磁场边界线L3时通过线圈的电荷量为0. 5 C |
B.cd边经过磁场边界线L3时的速度大小为4 m/s |
C.cd边经过磁场边界线L2和 L4的时间间隔为0.25s |
D.线圈从开始运动到cd边经过磁场边界线L4过程,线圈产生的热量为0.7J |
粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如下图所示,则在移出过程中线框的一边A.b两点间电势差绝对值最大的是( )