下列有关带电粒子与静止磁场的关系的说法中,正确的是( )
A.带电粒子在磁场中运动时,其所受的磁场力可能为零 |
B.在磁场中运动的粒子,速度越大,其所受的磁场力越大 |
C.在磁场中运动的粒子,速度越大,其所受的磁场力越小 |
D.静止的带电粒子在磁场中也可能受到磁场的力的作用 |
【分析】当粒子运动方向与磁场平行时,不受洛伦兹力作用;当粒子运动方向与磁场垂直时,洛伦兹力最大;结合公式f=qvBsinθ进行分析即可.
如图所示,下端封闭,上端开口且内壁光滑的细玻璃管竖直放置,管底有一带电的小球,整个装置水平向右做匀速运动,进入方向垂直于纸面向里的匀强磁场,由于外力作用,玻璃管在磁场中的速度保持不变,最终小球从上端口飞出,若小球的电荷量始终保持不变,则从玻璃管进入磁场到小球飞出上端口的过程中
A.洛伦兹力对小球做正功 |
B.小球在竖直方向上作匀加速直线运动 |
C.小球的运动轨迹是抛物线 |
D.小球的机械能守恒 |
如图所示,绝缘轨道由弧形轨道和半径为R=0.16m的圆形轨道、水平轨道连接而成,处于竖直面内的匀强电场中,PQ左右两侧电场方向相反,其中左侧方向竖直向下,场强大小均为103V/m,不计一切摩擦。质量为m=0.1kg的带正电小球可看作质点)从弧形轨道某处由静止释放,恰好能通过圆形轨道最高点,小球带电荷量q=1.0×10-3C,g取10m/s2。求:
(1)小球释放点的高度h
(2)若PQ右侧某一区域存在垂直纸面向里的匀强磁场(图中未画出),磁感应强度B=4×102T,小球通过圆形轨道后沿水平轨道运动到P点进入磁场,从竖直边界MN上的A点离开时速度方向与电场方向成30o,已知PQ、MN边界相距L=0.7m,求:
①小球从P到A经历的时间
②若满足条件的磁场区域为一矩形,求最小的矩形面积。
设空间存在竖直向下的匀强电场,垂直纸面向里的匀强磁场,如图.已知一离子在电场力和洛伦兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,以下说法正确的是 ( )
A.离子必带正电荷 |
B.A和B位于同一高度 |
C.离子在C点时速度最大 |
D.离子到达B点后,将沿原曲线返回A点 |
有三束粒子,分别是质子(p)、氚核()和α粒子束,如果它们以相同的速度沿垂直于磁场方向射入匀强磁场(方向垂直于纸面向里),在下图中,哪个图能正确地表示出了这三束粒子的偏转轨迹 ( )
如图所示,矩形区域Ⅰ和Ⅱ内分别存在方向垂直于纸面向外和向里的匀强磁场(AA′、BB′、CC′、DD′为磁场边界,四者相互平行),磁感应强度大小均为B,矩形区域的长度足够长,磁场宽度及BB′与CC′之间的距离相同.某种带正电的粒子从AA′上的O1处以大小不同的速度沿与O1A成α=30°角进入磁场(如图所示,不计粒子所受重力),当粒子的速度小于某一值时,粒子在区域Ⅰ内的运动时间均为t0;当速度为v0时,粒子在区域Ⅰ内的运动时间为.求:
(1)粒子的比荷;
(2)磁场区域Ⅰ和Ⅱ的宽度d;
(3)速度为v0的粒子从O1到DD′所用的时间.
如图所示装置的左半部分为速度选择器,相距为d的两块平行金属板分别连在电压可调的电源两极上(上板接正极),板间存在方向垂直纸面向里、磁感应强度为B0的匀强磁场;右半部分为一半径为R的半圆形磁场区域,内有垂直纸面向外、磁感应强度为B的匀强磁场.矩形abcd相切于半圆,小孔M、N连线延长线经过圆心O点且与ad垂直.一束质量为m、带电量为+q的离子(不计重力)以不同速率沿MN方向从M孔射入.
(1)金属板间电压为U0时,求从N孔射出的离子的速度大小;
(2)要使离子能打到ab上,求金属板间电压U的取值范围.
如图所示圆形区域内有垂直于纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a、b、c,以不同的速率沿着AO方向对准圆心O射入磁场,其运动轨迹如图所示。若带电粒子只受磁场力的作用,则下列说法正确的是( )
A.a粒子速率最大 |
B.c粒子在磁场中运动的时间最长 |
C.c粒子速率最大 |
D.它们做圆周运动的周期 |
如图所示,直角三角形OAB区域内存在方向垂直纸面向外的匀强磁场,C为AB的中点。现有比荷相同的两个分别带正、负电的粒子(不计重力)沿OC方向同时从O点射入磁场,下列说法正确的是( )
A.若有一个粒子从OA边射出磁场,则另一个粒子一定从OB边射出磁场
B.若有一个粒子从OB边射出磁场,则另一个粒子一定从CA边射出磁场
C.若两个粒子分别从A.B两点射出磁场,则它们在磁场中运动的时间之比为
D.若两个粒子分别从A.B两点射出磁场,则它们在磁场中运动的轨道半径之比为
如图所示,水平放置的两块长直平行金属板a、b相距d =0.10 m,a、b间的电场强度为E=5.0×105 N/C,b板下方整个空间存在着磁感应强度大小为B=0.6 T、方向垂直纸面向里的匀强磁场.今有一质量为m=4.8×10-25 kg、电荷量为q=1.6×10-18 C的带正电的粒子(不计重力),从贴近a板的左端以v0=1.0×106 m/s的初速度水平射入匀强电场,刚好从狭缝P处穿过b板而垂直进入匀强磁场,最后粒子回到b板的Q处(图中未画出).求:
(1)判断a、b两板间电场强度的方向;
(2)求粒子到达P处的速度与水平方向的夹角θ;
(3)求P、Q之间的距离L(结果可保留根号).
如图所示,在一矩形区域内有磁感应强度方向垂直纸面向外的匀强磁场,磁感应强度大小为B,磁场宽度为d.不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t,粒子飞出磁场时偏离原方向60°角.利用以上数据能求出的物理量是( )
A.带电粒子在磁场中运动的半径 |
B.带电粒子的初速度 |
C.带电粒子在磁场中运动的周期 |
D.带电粒子的质量 |
在图所示的四个图中,标出了匀强磁场的磁感应强度B的方向、带正电的粒子在磁场中速度v的方向和其所受洛伦兹力f的方向,其中正确表示这三个方向关系的图是( )
如图所示,一个质量为m,电荷量+q的带电微粒(重力忽略不计),从静止开始经U1电压加速后,水平进入两平行金属板间的偏转电场中,金属板长L,两板间距d,微粒射出偏转电场时的偏转角θ=30°,又接着进入一个方向垂直于纸面向里的匀强磁场区,求:
(1)微粒进入偏转电场时的速度v0是多大?
(2)两金属板间的电压U2是多大?
(3)若该匀强磁场的磁感应强度B,微粒在磁场中运动后能从左边界射出,则微粒在磁场中的运动时间为多少?
(4)若该匀强磁场的宽度为D,为使微粒不会从磁场右边射出,该匀强磁场的磁感应强度B至少多大?
如图所示,摆球带正电荷的单摆在一匀强磁场中摆动,匀强磁场的方向垂直于纸面向里,摆球在AB间摆动过程中,由A摆到最低点C时,摆线拉力的大小为F1,摆球加速度大小为a1;由B摆到最低点C时,摆线拉力的大小为F2,摆球加速度大小为a2,则( )
A.F1>F2,a1=a2 | B.F1<F2,a1=a2 | C.F1>F2,a1>a2 | D.F1<F2,a1<a2 |
一质量m、电荷量+q的圆环,可在水平放置的足够长的粗糙细杆上滑动.细杆处于磁感应强度为B的匀强磁场中.现给圆环向右初速度v0,以后的运动过程中圆环运动的速度图象可能是( )
A. | B. | C. | D. |