如图甲所示,两平行金属板长度l不超过0.2 m,两板间电压U随时间t变化的U-t图象如图乙所示.在金属板右侧有一左边界为MN、右边无界的匀强磁场,磁感应强度B=0.01 T,方向垂直纸面向里.现有带正电的粒子连续不断地以速度v0=105 m/s射入电场中,初速度方向沿两板间的中线OO′方向.磁场边界MN与中线OO′垂直.已知带电粒子的比荷=108 C/kg,粒子的重力和粒子之间的相互作用力均可忽略不计.
(1)在每个粒子通过电场区域的时间内,可以把板间的电场强度当做恒定的.请通过计算说明这种处理能够成立的理由;
(2)设t=0.1 s时刻射入电场的带电粒子恰能从金属板边缘穿越电场射入磁场,求该带电粒子射出电场时速度的大小;
(3)对于所有经过电场射入磁场的带电粒子,设其射入磁场的入射点和从磁场射出的出射点间的距离为d,试判断:d的大小是否随时间变化?若不变,证明你的结论;若变化,求出d的变化范围.
如图所示,在以坐标原点O为圆心.半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t0时间从P点射出。
(1)求电场强度的大小和方向。
(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经时间恰从半圆形区域的边界射出。求粒子运动加速度的大小。
(3)若仅撤去电场,带电粒子仍从O点射入,且速度为原来的4倍,
求粒子在磁场中运动的时间。
(17分)如图所示,高为h的绝缘板静止在光滑水平面上,放置在其右端的小物块带电量为+q,绝缘板和小物块的质量均为,它们之间的动摩擦因数为μ。有界匀强磁场方向垂直纸面向里,磁感应强度大小为B。现对绝缘板施加一个水平向右、大小为μmg的恒力。当绝缘板即将离开磁场时,小物块恰好到达它的最左端,且对绝缘板无压力,此时绝缘板的速度是小物块速度的2倍。设滑动摩擦力等于最大静摩擦力。求:
⑴小物块离开绝缘板时的速率;
⑵小物块落地时与绝缘板间的距离;
⑶运动过程中滑动摩擦力对小物块所做的功。
如图所示,带电平行金属板PQ和MN之间的距离为d,两金属板之间有垂直纸面向里的匀强磁场,磁感应强度大小为B,如图建立坐标系,x轴平行于金属板,与金属板中心线重合,y轴垂直于金属板。区域I的左边界在y轴,右边界与区域II的左边界重合,且与y轴平行;区域II的左、右边界平行。在区域I和区域II内分别存在匀强磁场,磁感应强度大小均为B,区域I内的磁场垂直于Oxy平面向外,区域II内的磁场垂直于Oxy平面向里。一电子沿着x轴正向以速度v0射入平行板之间,在平行板间恰好沿着x轴正向做直线运动,并先后通过区域I和Ⅱ。已知电子电量为e,质量为m,区域I和区域II沿x轴方向宽度均为,不计电子所受重力。
(1)求两金属板之间电势差U
(2)求电子从区域II右边界射出时,射出点的纵坐标y
如图所示,在y轴右侧平面内存在垂直xoy平面向里的匀强磁场,磁感应强度B=0.5T。坐标原点O有一放射源,可以连续不断地向y轴右侧面内沿各个方向放射出比荷=4×106C/kg的正离子,这些正离子的速率分别在0到2×106m/s的范围内,不计离子的重力及它们之间的相互作用。
(1)求离子打到y轴上的范围
(2)若在某时刻沿+x方向放射出各种速率的离子,求经过t=×10-7s时这些离子所在位置构成的曲线方程。
(3)若从某时刻开始向y轴右侧各个方向放射出各种速率的离子,求经过t=×10-7s时已进入磁场的离子可能出现的区域面积。