如图所示,在0≤x≤b、0≤y≤a的长方形区域中有一磁感应强度大小为B的匀强磁场,磁场的方向垂直于xOy平面向外。O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内的第一象限内。己知粒子在磁场中做圆周运动的周期为T,最先从磁场上边界中飞出的粒子经历的时间为,最后从磁场中飞出的粒子经历的时间为。不计粒子的重力及粒子间的相互作用,则:( )
A.粒子的射入磁场的速度大小 |
B.粒子圆周运动的半径 |
C.长方形区域的边长满足关系 |
D.长方形区域的边长满足关系 |
如图所示圆形区域内有垂直于纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a、b、c,以不同的速率沿着AO方向对准圆心O射入磁场,其运动轨迹如图所示。若带电粒子只受磁场力的作用,则下列说法正确的是( )
A.a粒子速率最大 |
B.c粒子在磁场中运动的时间最长 |
C.c粒子速率最大 |
D.它们做圆周运动的周期 |
如图所示,长方体玻璃水槽中盛有NaCl的水溶液,在水槽左、右侧壁内侧各装一导体片,使溶液中通入沿x轴正向的电流I,沿y轴正向加恒定的匀强磁场B。图中a、b是垂直于z轴方向上水槽的前后两内侧面,则( )
A.a处电势高于b处电势
B.a处离子浓度大于b处离子浓度
C.溶液的上表面电势高于下表面的电势
D.溶液的上表面处的离子浓度大于下表面处的离子浓度
如图所示,圆柱形区域横截面,在没有磁场的情况下,带电粒子(不计重力)以某一初速度沿截面直径方向入射时,穿过此区域的时间为t;若该区域加沿轴线方向的匀强磁场,磁感应强度为B,带电粒子仍以同一初速度沿截面直径入射,粒子飞出此区域时,速度方向偏转了.根据上述条件可求得的物理量有
A.带电粒子的初速度 |
B.带电粒子在磁场中运动的半径 |
C.带电粒子在磁场中运动的周期 |
D.带电粒子的比荷 |
如图所示,在粗糙的足够长的竖直木杆上套有一个带正电小球,整个装置处在有水平匀强电场和垂直于纸面向里的匀强磁场组成的足够大的复合场中,小球由静止开始下滑,在整个运动过程中,关于描述小球运动的v﹣t图象中正确的是( )
A. | B. | C. | D. |
在图所示的四个图中,标出了匀强磁场的磁感应强度B的方向、带正电的粒子在磁场中速度v的方向和其所受洛伦兹力f的方向,其中正确表示这三个方向关系的图是( )
如图所示,实线表示竖直平面内的电场线,电场线与水平方向成α角,水平方向的匀强磁场与电场正交,有一带电液滴沿斜向上的虚线L斜向上做直线运动,L与水平方向成β角,且α>β,则下列说法中正确的是
A.液滴一定做匀速直线运动 | B.液滴一定带负电 |
C.电场线方向一定斜向上 | D.液滴有可能做匀变速直线运动 |
汤姆孙提出的测定带电粒子的比荷的实验原理如图所示。带电粒子经过电压为U的加速电场加速后,垂直于磁场方向进入宽为L的有界匀强磁场,带电粒子穿过磁场时发生的偏转位移是d,若磁场的磁感应强度为B。则带电粒子的比荷为
A.
B.
C.
D.
如图是质谱仪工作原理的示意图。带电粒子a、b从容器中的A点飘出(在A点初速度为零),经电压U加速后,从x轴坐标原点处垂直进入磁感应强度为B的匀强磁场,最后打在放在x轴上感光板S上坐标分别为x1、x2的两点。图中半圆形的虚线分别表示带电粒子a、b所通过的路径,则以下说法正确的是 ( )
A.b进入磁场时的速度一定大于a进入磁场时的速度 |
B.a的比荷一定小于b的比荷 |
C.若a、b电荷量相等,则a、b的质量之比为x12∶x22 |
D.若a、b质量相等,则a、b在磁场中运动时间之比为x1∶x2 |
1957年,科学家首先提出了两类超导体的概念,一类称为I型超导体,主要是金属超导体,另一类称为Ⅱ型超导体(载流子为电子),主要是合金和陶瓷超导体。I型超导体对磁场有屏蔽作用,即磁场无法进入超导体内部,而Ⅱ型超导体则不同,它允许磁场通过。现将一块长方体Ⅱ型超导体通入稳恒电流I后放入匀强磁场中,如图所示。下列说法正确的是( )
A.超导体的内部产生了热能 |
B.超导体所受安培力等于其内部所有电荷定向移动所受洛伦兹力的合力 |
C.超导体表面上a、b两点的电势关系为 |
D.超导体中电流I越大,a、b两点的电势差越大 |
在一个边界为等边三角形的区域内,存在一个方向垂直于纸面向里的匀强磁场,在磁场边界上的P点处有一个粒子源,发出比荷相同的三个粒子a、b、c(不计重力)沿同一方向进入磁场,三个粒子通过磁场的轨迹如图所示,用ta、tb、tc分别表示a、b、c通过磁场的时间;用ra、rb、rc分别表示a、b、c在磁场中的运动半径,则下列判断正确的是( )
A.ta=tb>tc | B.tc>tb>ta | C.rc>rb>ra | D.rb>ra>rc |
三个速度大小不同的的同种带电粒子,沿如图所示长方形 区域匀强磁场的上边缘射入,当它们从下边缘飞出时,对入射方向的偏角分别为900、600、300,则它们在磁场中运动时间之比为
A.1:1:1 | B.1:2:3 | C.3:2:1 | D. |
质谱仪是一种测定带电粒子质量或分析同位素的重要设备,它的构造原理如图示.离子源S产生的各种不同正离子束(速度可视为零),经MN间的加速电压U加速后从小孔S1垂直于磁感线进入匀强磁场,运转半周后到达照相底片上的P点.设P到S1的距离为x,则
A.若离子束是同位素,则x越大对应的离子质量越小 |
B.若离子束是同位素,则x越大对应的离子质量越大 |
C.只要x相同,对应的离子质量一定相同 |
D.只要x相同,对应的离子的电量一定相等 |
如图是某离子速度选择器的原理示意图,在一半径为R=10cm的圆形筒内有B=1×10-4T的匀强磁场,方向平行于圆的轴线.在圆柱形筒上某一直径两端开有小孔a、b分别作为入射孔和出射孔.现有一束比荷为q/m=2×1011C/kg的正离子,以不同角度α入射,最后有不同速度的离子束射出,其中入射角α=30°,且不经碰撞而直接从出身孔射出的离子的速度v大小是
A.4×105m/s | B.4×106m/s | C.2×105m/s | D.2×106m/s |