如图所示,平行四边形CDEF的DE边的长度是CD边的长度的2倍,CD的长度为d,且CD边与对角线DF垂直,垂直平行四边形平面的匀强磁场仅分布在平行四边形CDEF内部,CF边界以上的足够大区域内有如图所示的匀强电场。一束比荷为k的正粒子以相同速率v从D点沿DE方向射入磁场,不计粒子之间的作用和粒子的重力。假设粒子都能从CF边上射出磁场,试求:
(1)匀强磁场的磁感应强度范围;
(2)要使带电粒子离开磁场的速度方向恰好与CF垂直,求此时的磁感应强度;
(3)若满足条件(2)的粒子在电场中的运动轨迹与DF延长线的交点到F点的距离为3d,求匀强电场的电场强度E0。
如图(甲)所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N。现有一质量为m,带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,速度方向与x轴夹角为30°。此时在圆形区域加如图(乙)所示周期性变化的磁场(磁场从t = 0时刻开始变化,且以垂直于纸面向外为磁场正方向),最后电子运动一段时间后从N点飞出,速度方向与x轴夹角也为30°。求:
(1)电子进入圆形磁场区域时的速度大小(请作出电子飞行的轨迹图);
(2)0≤x≤L区域内匀强电场场强E的大小;
(3)写出圆形磁场区域磁感应强度B0的大小、磁场变化周期T各应满足的表达式。
关于磁感应强度,下列说法正确的是
A.磁场中某处的磁感应强度的方向跟电流在该处受到的磁场力的方向相同 |
B.通电导线所受的磁场力为零,该处的磁感应强度也一定为零 |
C.放置在磁场中1 m长的通电导线,通过1 A的电流,受到的磁场力为1 N,则该处的磁感应强度就是 1 T |
D.一小段通电导线放在磁感应强度为零的位置,那么它受到的磁场力也一定为零 |
回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生质量为m、电荷量为+q的粒子,在加速电压为U的加速电场中被加速。所加磁场的磁感应强度、加速电场的频率可调,磁场的磁感应强度最大值为Bm和加速电场频率的最大值fm。则下列说法正确的是
A.粒子第n次和第n+1次半径之比总是︰ |
B.粒子从静止开始加速到出口处所需的时间为 |
C.若fm<,则粒子获得的最大动能为 |
D.若fm>,则粒子获得的最大动能为 |
在如图甲所示的电路中,螺线管匝数n=1500匝,横截面积S=20cm2.螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2=5.0Ω,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.则下列说法中正确的是
A.螺线管中产生的感应电动势为1.2V |
B.闭合S,电路中的电流稳定后电容器上极板带正电 |
C.电路中的电流稳定后,电阻R1的电功率为5×10-2W |
D.S断开后,流经R2的电量为1.8×10-5C |
如图所示,在y>0的区域内有沿y轴正方向的匀强电场,在y<0的区域内有垂直坐标平面向里的匀强磁场,一电子(质量为m、电量为e)从y轴上A点以沿x轴正方向的初速度开始运动,当电子第一次穿越x轴时,恰好到达C点,当电子第二次穿越x轴时,恰好到达坐标原点;当电子第三次穿越x轴时,恰好到达D点,C.D两点均未在图中标出。已知A.C点到坐标原点的距离分别为D.2d。不计电子的重力。求
(1)电场强度E的大小
(2)磁感应强度B的大小
(3)电子从A运动到D经历的时间t
如图所示,相距为D.板间电压为的平行金属板间有方向垂直纸面向里、磁感应强度大小为的匀强磁场:Op和x轴的夹角,在POy区域内有垂直纸面向外的匀强磁场,Pox区域内有沿着x轴正方向的匀强电场,场强大小为E:一质量为m、电荷量为q的正离子沿平行与金属板、垂直磁场方向射入板间并做匀速直线运动,从坐标为(0,L)的a点垂直y轴进入磁场区域,从OP上某点沿y轴负方向离开磁场进入电场,不计离子的重力,求:
(1)离子在平行金属板间的运动速度
(2)Poy区域内匀强磁场的磁感应强度B
(3)离子打在x轴上对应点的坐标
如图所示,光滑导轨与水平面成θ角,导轨宽L.匀强磁场磁感应强度为B.金属杆长也为L,质量为m,水平放在导轨上.当回路总电流为I1时,金属杆正好能静止.求:
(1)B至少多大?这时B的方向如何?
(2)若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?
已知通电长直导线周围某点的磁感应强度,即磁感应强度B与导线中的电流I成正比,与该点到导线的距离r成反比.如图甲所示,两根平行长直导线相距R,通以大小、方向均相同的电流.规定磁场垂直纸面向里为正方向,在0—R区间内磁感应强度B随x变化的图线可能是图乙中的( )
如图所示,宽为L=2m、足够长的金属导轨MN和M’N’放在倾角为θ=30°的斜面上,在N和N’之间连有一个阻值为R=1.2Ω的电阻,在导轨上AA’处放置一根与导轨垂直、质量为m=0.8kg、电阻为r=0.4Ω的金属滑杆,导轨的电阻不计。用轻绳通过定滑轮将电动小车与滑杆的中点相连,绳与滑杆的连线平行于斜面,开始时小车位于滑轮的正下方水平面上的P处(小车可视为质点),滑轮离小车的高度H=4.0m。在导轨的NN’和OO’所围的区域存在一个磁感应强度B=1.0T、方向垂直于斜面向上的匀强磁场,此区域内滑杆和导轨间的动摩擦因数为μ=,此区域外导轨是光滑的。电动小车沿PS方向以v=1.0m/s的速度匀速前进时,滑杆经d=1m的位移由AA’滑到OO’位置。(g取10m/s2)求:
(1)请问滑杆AA’滑到OO’位置时的速度是多大?
(2)若滑杆滑到OO’位置时细绳中拉力为10.1N,滑杆通过OO’位置时的加速度?
(3)若滑杆运动到OO’位置时绳子突然断了,则从断绳到滑杆回到AA’位置过程中,电阻R上产生的热量Q为多少?(设导轨足够长,滑杆滑回到AA’时恰好做匀速直线运动。)
如图所示,在直角坐标系xoy的第一、四象限区域内存在两个有界的匀强磁场:垂直纸面向外的匀强磁场I、垂直纸面向里的匀强磁场II,O、M、P、Q为磁场边界和x轴的交点OM=MP=L.在第三象限存在沿y轴正向的匀强电场.一质量为m、带电荷量为+q的粒子从电场中坐标为(﹣2L,﹣L)的点以速度υ0沿+x方向射出,恰好经过原点O处射入区域I又从M点射出区域I(粒子的重力忽略不计).
(1)求第三象限匀强电场场强E的大小;
(2)求区域I内匀强磁场磁感应强度B的大小;
(3)如带电粒子能再次回到原点O,问区域II内磁场的宽度至少为多少?粒子两次经过原点O的时间间隔为多少?
如图所示,质量,电阻,长度的导体棒横放在U型金属框架上.框架质量,放在绝缘水平面上,与水平面间的动摩擦因数,相距的相互平行,电阻不计且足够长.电阻的垂直于.整个装置处于竖直向上的匀强磁场中,磁感应强度.垂直于施加的水平恒力,从静止开始无摩擦地运动,始终与保持良好接触.当运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,取.
(1)求框架开始运动时速度的大小;
(2)从开始运动到框架开始运动的过程中,上产生的热量,求该过程位移的大小。
(16分)如图所示,MN和PQ是竖直放置相距1m为的滑平行金属导轨(导轨足够长,电阻不计),其上方连有R1=9Ω的电阻和两块水平放置相距d=20cm的平行金属板AC,金属板长1m,将整个装置放置在图示的匀强磁场区域,磁感强度B=1T,现使电阻R2=1Ω的金属棒ab与导轨MN、PQ接触,并由静止释放,当其下落h=10m时恰能匀速运动(运动中ab棒始终保持水平状态,且与导轨接触良好).此时,将一质量m1=0.45g,带电量q=1.0×10-4C的微粒放置在A、C金属板的正中央,恰好静止。g=10m/s2).求:
(1)微粒带何种电荷,ab棒的质量m2是多少
(2)金属棒自静止释放到刚好匀速运动的过程中,电路中释放多少热量
(3)若使微粒突然获得竖直向下的初速度v0,但运动过程中不能碰到金属板,对初速度v0有何要求?该微粒发生大小为的位移时,需多长时间
如图所示,在倾角为37°的固定金属导轨上,放置一个长L=0.4m、质量m=0.3kg的导体棒,导体棒垂直导轨且接触良好。导体棒与导轨间的动摩擦因数μ=0.5。金属导轨的一端接有电动势E=4.5V、内阻r=0.50Ω的直流电源,电阻R=2.5Ω,其余电阻不计,假设最大静摩擦力等于滑动摩擦力。现外加一与导体棒垂直的匀强磁场,(sin37°=0.6,cos37°=0.8 g=10m/s2)求:
(1)使导体棒静止在斜面上且对斜面无压力,所加磁场的磁感应强度B的大小和方向;
(2)使导体棒静止在斜面上,所加磁场的磁感应强度B的最小值和方向。