图为远距离输电示意图,两变压器均为理想变压器,升压变压器T的原、副线圈匝数分别为n1、n2,在T的原线圈两端接入一电压u=Umsinωt的交流电源,若输送电功率为P,输电线的总电阻为2r,不考虑其它因素的影响,则输电线上损失的电功率为( )
A.() | B.() |
C.4()2()2r | D.4()2()2r |
如图所示的电路中,电源的输出电压恒为U,电动机M的线圈电阻与电炉L的电阻相同,电动机正常工作,在相同的时间内,下列判断正确的是( )
A.电炉放出的热量大于电动机放出的热量 |
B.电炉两端的电压小于电动机两端的电压 |
C.电炉两端的电压等于电动机两端的电压 |
D.电动机消耗的电功率等于电炉消耗的电功率 |
如图,a、b分别表示一个电池组和一只电阻R的伏安特性曲线.用该电池组直接与电阻R连接成闭合电路,则以下说法正确的是
A.电池组的内阻是0.33Ω |
B.电阻的阻值为1Ω |
C.电池组的输出功率将是4W |
D.改变电阻R的阻值时,该电池组的最大输出功率为4W |
通常一次闪电过程历时约0.2~0.3s,它由若干个相继发生的闪击构成.每个闪击持续时间仅40~80 μs,电荷转移主要发生在第一个闪击过程中.在某一次闪电前云地之间的电势差约为1.0×109V,云地间距离约为1km;第一个闪击过程中云地间转移的电荷量约为6C,闪击持续时间约为60μs.假定闪电前云地间的电场是均匀的.根据以上数据,下列判断正确的是( )
A.闪电电流的瞬时值可达到1×105A |
B.整个闪电过程的平均功率约为1×1014W |
C.闪电前云地间的电场强度约为1×106V/m |
D.整个闪电过程向外释放的能量约为6×106J |
关于电功和电热的计算,下列说法正确的是( )
A.如果是纯电阻电路,电功可用公式W=UIt计算,也可用公式W=I2Rt计算 |
B.如果是纯电阻电路,电热可用公式W=I2Rt计算,但不能用公式W=UIt计算 |
C.如果不是纯电阻电路,电功只能用公式W=I2Rt计算 |
D.如果不是纯电阻电路,电热可用公式W=I2Rt计算,也可用公式W=UIt计算 |
如图所示的电路,电源内阻为r,A、B,C为三个相同的灯泡,其电阻均为,当变阻器的滑动触头P向下滑动时
A.A灯变暗,B灯变亮,C灯变暗
B.A灯与C灯的电流改变量的绝对值相等
C.A灯与B灯的电压改变量的绝对值相等
D.电源输出的电功率减小
在图所示的电路中,电源内阻忽略不计,电动势为E,电阻R1、R2阻值相等,保持R1的阻值不变,改变R2的阻值,则关于R2消耗的功率P的说法正确的是( )
A.R2增大,P增大;R2减小,P减小 |
B.R2增大,P减小;R2减小,P增大 |
C.无论R2是增大还是减小,P均减小 |
D.无论R2是增大还是减小,P均增大 |
额定电压都是110V,额定功率PA=100W、PB=40W的电灯两盏,若接在外电压是220V的电路上,使每盏电灯均能正常发光,且电路中消耗的功率最小的电路是下列图所示的( )
A. | B. | C. | D. |
一台额定电压为U的电动机,它的线圈电阻为R,正常工作时通过的电流为I,则( )
A.电动机t秒内产生的热量Q=IUt |
B.电动机t秒内产生的热量Q=I2Rt |
C.电动机的输入功率为P=I2R |
D.电动机的机械功率为P= |
一个微型吸尘器的直流电动机的额定电压为U,额定电流为I,线圈电阻为R,将它接在电动势为E,内阻为r的直流电源的两极间,电动机恰好能正常工作,则( )
A.电动机消耗的总功率为I2R |
B.电动机消耗的热功率为 |
C.电源的输出功率为EI |
D.电源的效率为1- |
一个直流电动机所加电压为U,电流为 I,线圈内阻为 R,当它工作时,下述说法中正确的是 ( )
A.电动机的输出功率为U2/R |
B.电动机的发热功率为I2R |
C.电动机的输出功率为IU-I2R |
D.电动机的功率可写作IU=I2R=U2/R |
在研究微型电动机的性能时,应用如图所示的实验电路。当调节滑动变阻器R并控制电动机停止转动时,电流表和电压表的示数分别为0.50A和2.0V。重新调节R并使电动机恢复正常运转,此时电流表和电压表的示数分别为2.0A和24.0V。假设电动机线圈的电阻不随温度变化而变化,则这台电动机正常运转时输出功率为( )
A.32W | B.48W | C.44W | D.47W |
如图所示的电路中,R1、R2都是“4w、100Ω”的电阻,R3是“1w、100Ω”的电阻,则AB间允许消耗的最大功率是( )
A.1.5w | B.4.5w | C.8w | D.9w |