如下图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°由静止释放,小球到达最低点时与Q的碰撞时间极短,且无机械能损失。已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,平板车与Q的质量关系是M:m=4:1,重力加速度为g。求:
(1)小物块Q离开平板车P时,P和Q的速度大小?
(2)平板车P的长度为多少?
(3)小物块Q落地时与平板车P的水平距离为多少?
如图所示,质量分别为m1和m2的两个小球A、B在光滑的水平面上分别以速度v1、v2同向运动并发生对心碰撞,碰后B球被右侧的墙原速弹回,又与A球相碰,碰后两球都静止。
①求两球第一次碰撞后B球的速度。
②B与竖直墙面碰撞过程中,墙对B球的冲量大小及方向?
如图所示,光滑水平面上放置质量均为M="2" kg的甲、乙两辆小车,两车之间通过一感应开关相连(当滑块滑过两车连接处时,感应开关使两车自动分离,分离时对两车及滑块的瞬时速度没有影响),甲车上表面光滑,乙车上表面与滑块P之间的动摩擦因数μ=0.5。一根轻质弹簧固定在甲车的左端,质量为m="l" kg的滑块P(可视为质点)与弹簧的右端接触但不相连,用一根细线拴在甲车左端和滑块P之间使弹簧处于压缩状态,此时弹簧的弹性势能E0=l0J,弹簧原长小于甲车长度,整个系统处于静止状态,现剪断细线,滑块p滑上乙车后最终未滑离乙车,g取l0m/s2,求:
(1)滑块P滑上乙车前的瞬时速度的大小v1
(2)乙车的最短长度L
甲、乙两个溜冰者质量分别为48kg和50kg,甲手里拿着质量为2kg的球,两人均以2m/s的速率,在光滑的冰面上沿同一直线相向滑行,甲将球传给乙,乙再将球传给甲,这样抛接几次后,球又回到甲的手里,乙的速度为零,则甲的速度的大小为 。(填选项前的编号)
A.0 | B.2m/s | C.4m/s | D.无法确定 |
如图所示,一质量为M=1.2kg的物块静止在桌面边缘,桌面离水平地面的高度为h=1.8m。一质量为m=20g的子弹以水平速度vo=100m/s射入物块,在很短的时间内以水平速度穿出。已知物块落地点离桌面边缘的水平距离x为0.9m,重力加速度g取10m/s2,求子弹穿出物块时速度v的大小。
如图所示,在光滑水平面上有一辆质量M="8" kg的平板小车,车上有一个质量m=1.9 kg的木块,木块距小车左端6 m(木块可视为质点),车与木块一起以v="1" m/s的速度水平向右匀速行驶.一颗质量m0=0.1 kg的子弹以v0="179" m/s的初速度水平向左飞来,瞬间击中木块并留在其中,最终木块刚好不从车上掉下来.
(1)子弹射入木块后的共同速度为v1;
(2)木块与平板之间的动摩擦因数(g="10" m/s2)
如图甲所示,一轻弹簧的两端与质量分别为m1和m2的两物块A、B相连接,并静止在光滑的水平面上.现使B瞬时获得水平向右的速度3 m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( )
A.在t1、t3时刻两物块达到共同速度1 m/s,且弹簧都处于伸长状态
B.从t3到t4时刻弹簧由压缩状态恢复到原长
C.两物体的质量之比为m1∶m2=1∶2
D.在t2时刻A与B的动能之比为Ek1∶Ek2=8∶1
在光滑水平面上,动能为E0,动量大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞后球1的运动方向相反.设碰撞后球1的动能和动量的大小分别为E1、p1,球2的动能和动量的大小分别为E2、p2,则( )
A.E1<E0 | B.E2>E0 | C.p1<p0 | D.p2<p0 |
如图所示,用"碰撞实验器"可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系:先安装好实验装置,在地上铺一张白纸,白纸上铺放复写纸,记下重垂线所指的位置O.
接下来的实验步骤如下:
步骤1:不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上.重复多次,用尽可能小的圆,把小球的所有落点圈在里面,其圆心就是小球落点的平均位置;
步骤2:把小球2放在斜槽前端边缘位置B,让小球1从A点由静止滚下,使它们碰撞.重复多次,并使用与步骤1同样的方法分别标出碰撞后两小球落点的平均位置;
步骤3:用刻度尺分别测量三个落地点的平均位置M、P、N离O点的距离,即线段OM、OP、ON的长度.
① 对于上述实验操作,下列说法正确的是________
A.应使小球每次从斜槽上相同的位置自由滚下
B.斜槽轨道必须光滑
C.斜槽轨道末端必须水平
D.小球1质量应大于小球2的质量
② 上述实验除需测量线段OM、OP、ON的长度外,还需要测量的物理量有________.
A.A、B两点间的高度差h1
B.B点离地面的高度h2
C.小球1和小球2的质量m1、m2
D.小球1和小球2的半径r
③当所测物理量满足表达式______________(用所测物理量的字母表示)时,即说明两球碰撞遵守动量守恒定律.如果还满足表达式______________(用所测物理量的字母表示)时,即说明两球碰撞时无机械能损失.
④完成上述实验后,某实验小组对上述装置进行了改造,如图所示.在水平槽末端与水平地面间放置了一个斜面,斜面的顶点与水平槽等高且无缝连接.使小球1仍从斜槽上A点由静止滚下,重复实验步骤1和2的操作,得到两球落在斜面上的平均落点M′、P′、N′.用刻度尺测量斜面顶点到M′、P′、N′三点的距离分别为l1、l2、l3.则验证两球碰撞过程中动量守恒的表达式为____________(用所测物理量的字母表示).
如图所示,光滑水平面上有A、B两物块,已知A物块的质量为2kg,以4m/s的速度向右运动,B物块的质量为1kg,以2m/s的速度向左运动,两物块碰撞后粘在一起共同运动。若规定向右为正方向,则碰撞前B物块的的动量为_______kg﹒m/s,碰撞后共同速度为______m/s。
如图(a),O、N、P为直角三角形的三个顶点,∠NOP=37°,OP中点处固定一电量为q1=2.0×10-8C的正点电荷,M点固定一轻质弹簧。MN是一光滑绝缘杆,其中ON长为a(a=1m),杆上穿有一带正电的小球(可视为点电荷),将弹簧压缩到O点由静止释放,小球离开弹簧后到达N点的速度为零。沿ON方向建立坐标轴(取O点处x=0),图(b)中Ⅰ和Ⅱ图线分别为小球的重力势能和电势能随位置坐标x变化的图像,其中E0=1.24×10-3J,E1=1.92×10-3J,E2=6.2×10-4J,k=9.0×109N·m2/C2, 取sin37°=0.6,cos37°=0.8,g=10m/s2。
(1)求电势能为E1时小球的位置坐标x1和小球的质量m;
(2)已知在x1处时小球与杆间的弹力恰好为零,求小球的电量q2;
(3)求小球释放瞬间弹簧的弹性势能Ep。
如图所示,光滑水平直轨道上有三个滑块A、B、C,质量分别为mB=m,mA=mC=2m,A、B用细绳连接,中间有一压缩的轻弹簧 (弹簧与滑块不栓接)。开始时A、B以共同速度v0运动,C静止。某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三滑块速度恰好相同。求:
i.B与C碰撞前B的速度
ii.弹簧具有的弹性势能
如图所示,质量为M=50g的木块用长为L=lm的轻绳悬挂于O点,质量为m=l0g的子弹以速度v1=500m/s向左水平穿过木块后,速度变成v2=490m/s,该过程历时极短可忽略不计,之后木块在竖直面内摆起来,经时间t=0.6s摆到最高点,不计空气阻力,重力加速度为g=l0m/s2.
试求:
(1)子弹穿过木块过程中,木块所受冲量大小.
(2)子弹穿过木块的过程,系统增加的热量Q.
如图所示,质量为2m、高度为h的光滑弧形槽末端水平,放置在光滑水平地面上,质量为m的小球A从弧形槽顶端静止释放,之后与静止在水平面上质量为m的小球B发生对心碰撞并粘在一起.求:
(1)小球A滑下后弧形槽的速度大小;
(2)小球A、B碰撞过程损失的机械能.