下列说法中正确的是
A.分子力做正功时,分子势能一定减小 |
B.大量分子的集体行为是不规则的,带有偶然性 |
C.一定质量的理想气体,温度升高,压强一定增大 |
D.用手捏面包,面包体积会缩小,这是分子间有间隙的缘故 |
密封容器中气体的压强 ( )
A.是由气体受到重力产生的 |
B.是大量气体分子频繁地碰撞器壁所产生的 |
C.是由气体分子间的相互作用力(吸引和排斥)产生的 |
D.当容器自由下落时将减为零 |
两端封闭的均匀直玻璃管竖直放置,内用高h的汞柱把管内空气分为上下两部分,静止时两段空气柱的长均为L,上端空气柱压强为p1=2ρgh(ρ为水银的密度)。当玻璃管随升降机一起在竖直方向上做匀变速运动时,稳定后发现上端空气柱长减为2L/3。则下列说法中正确的是( )
A.稳定后上段空气柱的压强大于2ρgh |
B.稳定后下段空气柱的压强小于3ρgh |
C.升降机一定在加速上升 |
D.升降机可能在加速下降 |
下列说法正确的是 (选对1个给3分,选对2个给4分,选对3个给6分,每选错一个扣3分,最低得分为0分)
A.当一定量气体吸热时,其内能可能减小 |
B.玻璃、石墨和金刚石都是晶体,木炭是非晶体 |
C.单晶体有固定的熔点,多晶体和非晶体没有固定的熔点 |
D.当液体与大气相接触时,液体表面层内的分子所受其它分子作用力的合力总是指向液体内部 |
E.气体分子单位时间内与单位面积器壁碰撞的次数,与单位体积内气体的分子数和气体温度有关
下列说法正确的是( )
A.知道水的摩尔质量和水分子的质量,可计算出阿伏加德罗常数 |
B.当液晶中电场强度不同时,它对不同颜色的光吸收强度就不同 |
C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体 |
D.理想气体的温度随时间不断升高,则其压强也一定不断增大 |
导热性能良好的气缸和活塞,密封一定质量的理想气体,气缸固定不动,保持环境温度不变,现在将活塞向下缓慢移动一段距离,则
A.外界对气体做功,内能不变 |
B.气体放出热量,内能增大 |
C.气缸内每个气体分子的动能保持不变 |
D.单位时间内撞击到器壁上单位面积的分子数减小 |
对气体的特点,有关说法中不正确的是( )
A.温度相同的氢气和氧气,氧气分子和氢气分子的平均动能相等 |
B.当气体的温度升高时,每个气体分子的速率都增大 |
C.压强不太大、温度不太低情况下的实际气体可看成理想气体 |
D.气体的压强是由大量气体分子对容器壁的频繁碰撞产生的 |
一定质量的理想气体,经等温压缩,气体的压强增大,用分子动理论的观点分析,这是因为( )
A.气体分子每次碰撞器壁的平均作用力增大 |
B.单位时间内单位面积器壁上受到气体分子碰撞的次数增多 |
C.气体分子的总数增加 |
D.气体分子的密度增大 |
如图,玻璃管内封闭了一段气体,气柱长度为l,管内外水银面高度差为h,若温度保持不变,把玻璃管稍向上提起一段距离,则( )
A.h、l均变小 |
B.h、l均变大 |
C.h变大l变小 |
D.h变小l变大 |
如图所示,均匀U形管内盛有液体,左右液面相平,左管用活塞封闭了一定量的气体A,右管封闭气体B,开始A、B两部分气体压强均为p,气柱的长度均为l,现将活塞缓慢上提,提升的高度为d,则此过程中( )
A.气柱A的长度增加量等于d
B.气柱B的长度增加量小于d
C.气体A的最终压强小于lp/(l+d)
D.气体A的最终压强大于lp/(l+d)
健身球是一个充满气体的大皮球,当人压向健身球上时,假设球内气体温度不变,则在这个过程中
A.气体分子的平均动能增大 | B.气体的密度增大 |
C.气体从外界吸收热量 | D.外界对气体做功 |
已知地球半径约为6.4×106m,空气的摩尔质量约为29×10-3kg/mol,一个标准大气压约为1.0×105Pa.利用以上数据可估算出地球表面大气在标准状况下的体积为( )
A.4×1016m3 | B.4×1018m3 |
C.4×1020m3 | D.4×1022m3 |
已知地球半径约为6.4×106m,空气的摩尔质量约为29×10-3kg/mol,一个标准大气压约为1.0×105Pa.利用以上数据可估算出地球表面大气在标准状况下的体积为( )
A.4×1016m3 | B.4×1018m3 |
C.4×1020m3 | D.4×1022m3 |
如图所示,天平右盘放砝码,左盘是一个水银气压计,玻璃管固定在支架上,天平已调节平衡,若大气压强增大,则( )
A.天平失去平衡,左盘下降 |
B.天平失去平衡,右盘下降 |
C.天平仍平衡 |
D.无法判定天平是否平衡 |