高中物理

如图所示,一个绝热的气缸(气缸足够高)竖直放置,内有一个绝热且光滑的活塞,中间有一个固定的导热性良好的隔板,隔板将气缸分成两部分,分别密封着两部分理想气体A和B。活塞的质量m=8kg,横截面积,与隔板相距h=25cm,现通过电热丝缓慢加热气体,当A气体吸收热量Q=200J时,活塞上升了,此时气体的温度为℃,已知大气压强,重力加速度

①加热过程中,若A气体的内能增加了,求B气体的内能增加量
②现在停止对气体加热,同时在活塞上缓慢添加沙粒,当活塞恰好回到原来的位置时,A气体的温度为℃,求此添加砂粒的总质量M。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,用轻质活塞在气缸内封闭一定质量理想气体,活塞与气缸壁间摩擦忽略不计,开始时活塞距气缸底高度h1 =" 0.50" m。给气缸加热,活塞缓慢上升到距离气缸底h2 =" 0.80" m处。上述过程中缸内气体吸收Q =" 450" J的热量。已知活塞横截面积S = 5.0×10-3 m2,大气压强p0 = 1.0×105 Pa。

(1)此过程中缸内气体增加的内能ΔU为多少?
(2)此后,若保持气缸内气体温度不变,让活塞最终还要稳定在距气缸底高度h1=0.50m处,需要在轻质活塞上放一个质量为多大的重物?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,用轻质活塞在气缸内封闭一定质量的理想气体,活塞与气缸壁之间的摩擦忽略不计。开始时活塞距气缸底的高度为,气体温度为。给气缸加热,活塞缓慢上升到距气缸底的高度为处时,缸内气体吸收Q=450J的热量。已知活塞横截面积,大气压强。求:

①加热后缸内气体的温度。
②此过程中缸内气体增加的内能

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、…、n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…、nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
⑴对导体棒ab施加水平向右的力,使其从图示位置开始运动并穿过n个磁场区,求导体棒穿越磁场区1的过程中通过电阻R的电荷量q;
⑵对导体棒ab施加水平向右的恒力F0,让它从磁场区1左侧边界处开始运动,当向右运动距时做匀速运动,求棒通过磁场区1所用的时间t;
⑶对导体棒ab施加水平向右的拉力,让它从距离磁场区1左侧x= x0的位置由静止开始做匀加速运动,当棒ab进入磁场区1时开始做匀速运动,此后在不同的磁场区施加不同的拉力,使棒ab保持做匀速运动穿过整个磁场区,求棒ab通过第i磁场区时的水平拉力Fi和棒ab在穿过整个磁场区过程中回路产生的电热Q。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

【物理一选修3-3】
(1)下列说法正确的是          。(选对一个给3分,选对两个给4分,选对3个给6分。每选错一个扣3分,最低得分为0分)

A.当人们感到潮湿时,空气的绝对湿度不一定大,但相对湿度一定很大
B.在轮胎爆裂的这一短暂过程中,气体膨胀,气体温度下降
C.随着科技的发展,将来可以利用高科技手段,将散失在环境中的内能重新收集起来加以利用而不引起其他变化
D.用油膜法测出油分子的直径后,要测定阿伏加德罗常数,只需再知道油的密度即可

E.产生表面张力的原因是表面层内液体分子间引力大于斥力
(2)如图所示,一直立的气缸用一质量为m的活塞封闭一定质量的理想气体,活塞横截面积为S,气体最初的体积为V0,气体最初的压强为0.5p0;汽缸内壁光滑且缸壁是导热的。开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,设周围环境温度保持不变,已知大气压强为p0,重力加速度为g。

①求活塞停在B点时缸内封闭气体的体积V;
②结合学过知识,说明整个过程中封闭气体是吸热还是放热。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

【物理—物理3-3】
(1)下列说法中正确的是       
a.当人们感到潮湿时,空气的绝对湿度不一定大,但相对湿度一定很大
b.在轮胎爆裂的这一短暂过程中,气体膨胀,气体温度下降
c.随着科技的发展,将来可以利用高科技手段,将散失在环境中的内能重新收集起来加以利用而不引起其他变化
d.用油膜法测出油分子的直径后,要测定阿伏加德罗常数,只需再知道油的密度即可
(2)如图所示,一直立的气缸用一质量为m的活塞封闭一定质量的理想气体,活塞横截面积为S,气体最初的体积为V0,气体最初的压强为0.5p0;汽缸内壁光滑且缸壁是导热的。开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,设周围环境温度保持不变,已知大气压强为p0,重力加速度为g。

①求活塞停在B点时缸内封闭气体的体积V;
②整个过程中封闭气体          (填“吸热”或“放热”),通过缸壁传递的热量Q=           

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

足够长的平行金属导轨MN、PQ放置在水平面上,处在磁感应强度B =1.00T的竖直方向匀强磁场,导轨M与P间连接阻值为R=0.30Ω的电阻,质量为m=0.5kg的金属棒ab与MP紧贴在导轨上,处于两导轨间的长度L=0.40m、电阻r=0.10Ω,如图所示。现在水平恒定拉力F作用下金属棒ab由静止开始向右运动,其运动距离与时间的关系如下表所示。导轨与金属棒间的动摩擦因数为0.3,导轨电阻不计。g=10m/s2。求:

时间t(s)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
运动距离x(m)
0.0
0.6
2.0
4.3
6.8
9.3
11.8
14.3

(1)在4.0s时间内,通过金属棒ab截面的电荷量q;
(2)水平恒定拉力F;
(3)在7.0s时间内,整个回路产生的电热Q。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(19分) 如图所示,在一倾角为370的绝缘斜面下端O,固定有垂直于斜面的绝缘挡板。斜面ON段粗糙,长度s=0.02m,NM段光滑,长度L=0.5m。在斜面的所在区域有竖直向下的匀强电场,场强为2×lo5 N/C。有一小滑块质量为2×10-3 kg,带正电,电量为 1×l0-7C,小滑块与ON段表面的动摩擦因数为0.75。将小滑块从M点由静止释放,在运动过程中没有电量损失,与挡板相碰后原速返回。已知,g取 l0m/s2.求:

(1)小滑块第一次过N点的速度大小;
(2)小滑块最后停在距离挡板多远的位置;
(3)小滑块在斜面上运动的总路程。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一太阳能空气集热器,底面及侧面为隔热材料,顶面为透明玻璃板,集热器容积为,开始时内部封闭气体的压强为。经过太阳曝晒,气体温度由升至

(1)求此时气体的压强。
(2)保持不变,缓慢抽出部分气体,使气体压强再变回到。求集热器内剩余气体的质量与原来总质量的比值。判断在抽气过程中剩余气体是吸热还是放热,并简述原因。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中物理热力学第一定律计算题