如图,水平放置的密封气缸内的气体被一竖直隔板分隔为左右两部分,隔板可在气缸内无摩擦滑动,右侧气缸内有一电热丝。气缸壁和隔板均绝热。初始时隔板静止,左右两边气体温度相等。现给电热丝提供一微弱电流,通电一段时间后切断电源。当缸内气体再次达到平衡时,与初始状态相比( )
A.右边气体温度升高,左边气体温度不变 |
B.左边气体温度升高,右边气体温度不变同的半径方向射入同一块半圆形玻璃砖,其透射光线都是由圆心O点沿OC方向射出.则可知 |
C.左边气体压强增大 |
D.右边气体内能的增加量等于电热丝放出的热量 |
如图所示,A、B气缸的长度均为60 cm,截面积均为40 cm2,C是可在气缸内无摩擦滑动的、体积不计的活塞,D为阀门.整个装置均由导热材料制成.原来阀门关闭,A内有压强pA = 2.4×105 Pa的氧气.B内有压强pB = 1.2×105 Pa的氢气.阀门打开后,活塞C向右移动,最后达到平衡.(假定氧气和氢气均视为理想气体,连接气缸的管道体积可忽略,环境温度不变)求:
①活塞C移动的距离及平衡后B中气体的压强;
②活塞C移动过程中B中气体是吸热还是放热(简要说明理由).
如图所示,一密闭气缸固定在地面上,内装有某种实际气体,气缸壁导热性能良好,活塞与气缸间摩擦不计。现已知气体分子间的作用力表示为斥力,则
A.如果保持外界温度不变,在活塞上加放物体,气体的内能将增加 |
B.如果保持外界温度不变,把活塞缓慢向上提,气体内能可能先减小后增加 |
C.保持活塞位置不变,使外界温度下降,气体的内能一定减小 |
D.如果外界温度上升,使得活塞缓慢上移,则气体的内能一定增加 |
)(如图所示,用轻质活塞在汽缸内封闭一定质量理想气体,活塞与汽缸壁间摩擦忽略不计,开始时活塞距汽缸底高度h1=0.50 m,气体的温度t1=27 ℃.给汽缸缓慢加热至t2=207 °C,活塞上升到距离汽缸底某一高度h2处,此过程中缸内气体增加的内能ΔU=300 J.已知活塞横截面积S=5.0×10-3 m2,大气压强p0=1.0×105 Pa.求:
①活塞距离汽缸底h2;
②此过程中缸内气体吸收的热量Q.
【物理3-3】 如图所示,质量为m=10kg的活塞将一定质量的理想气体密封在气缸中,开始时活塞距气缸底高度 =40cm.此时气体的温度=300K.现缓慢给气体加热,气体吸收的热量Q=420J,活塞上升到距气缸底=60cm.已知活塞面积,大气压强=1.O105Pa,不计活塞与气缸之间的摩擦,g取lOm/.求
(1)当活塞上升到距气缸底时,气体的温度T2
(2)给气体加热的过程中,气体增加的内能△U
[选修3-3]
(1)如图所示,一圆柱气缸直立于水平地面上,用横截面积为S、质量为m的活塞封闭了一定质量的理想气体,活塞处于静止状态,现通过气缸底部的电热丝给气体加热,活塞缓慢上升,则封闭气体 ;
A.状态变化是等压变化 | B.内能不断减小 |
C.分子的平均动能不断增大 | D.分子作用力是斥力 |
(2)在(1)的情况下,设电热丝电阻为R,通电电流为I,加热t时间后,活塞上升了h高度,同时气体向外传热Q,大气压强为p0,此过程中气体对外做功为 ,气体内能变化为 ;
(3)在“用油膜法测定分子的直径大小”的实验中,取1ml的油酸溶入1000ml的酒精中,再用滴管取1ml的油酸酒精溶液,测得共有99滴,然后让一滴溶液滴到表面撒有痱子粉的装水浅盘中,待油膜稳定后,测得油膜面积为253cm2,将油酸分子看成立方体模型,求:(保留一位有效数字)
①油酸分子直径d的大小;
②一滴溶液中所含的油酸分子数N。
)(某同学估测室温的装置如图所示。气缸导热性能良好,用绝热的活塞封闭一定质量的理想气体。室温时气体的体积V1=66mL,将气缸竖直放置于冰水混合物中,稳定后封闭气体的体积V2=60mL。不计活塞重力、活塞与缸壁间的摩擦,室内大气压p0=1.0×105Pa。
①室温是多少?
②上述过程中,外界对气体做的功是多少?
[物理--选修3-3]
(1)如图,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空。现将隔板抽开,气体会自发扩散至整个汽缸。待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积。假设整个系统不漏气。下列说法正确的是________(最多选3个)。
A. |
气体自发扩散前后内能相同 |
B. |
气体在被压缩的过程中内能增大 |
C. |
在自发扩散过程中,气体对外界做功 |
D. |
气体在被压缩的过程中,外界对气体做功 |
E. |
气体在被压缩的过程中,气体分子的平均动能不变 |
(2)一热气球体积为 ,内部充有温度为 的热空气,气球外冷空气的温度为 。已知空气在1个大气压、温度 时的密度为 ,该气球内、外的气压始终都为1个大气压,重力加速度大小为 。
(i)求该热气球所受浮力的大小;
(ii)求该热气球内空气所受的重力;
(iii)设充气前热气球的质量为 ,求充气后它还能托起的最大质量。
(1)如图,一定量的理想气体从状态a变化到状态b , 其过程如p-V图中从a到b的直线所示。在此过程中( )。
A.气体温度一直降低
B.气体内能一直增加
C.气体一直对外做功
D.气体一直从外界吸热
E.气体吸收的热量一直全部用于对外做功
(2)在两端封闭、粗细均匀的U形细玻璃管内有一股水银柱,水银柱的两端各封闭有一段空气。当U形管两端竖直朝上时,左、右两边空气柱的长度分别为 l 1=18.0 cm和 l 2=12.0 cm,左边气体的压强为12.0 cmHg。现将U形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边。求U形管平放时两边空气柱的长度。在整个过程中,气体温度不变。
[物理-选修3-3]
(1)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直至容器中的空气压强与外界相同。此时,容器中空气的温度__________(填"高于""低于"或"等于")外界温度,容器中空气的密度__________(填"大于""小于"或"等于")外界空气的密度。
(2)热等静压设备广泛用于材料加工中。该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改善其性能。一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为 ,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。已知每瓶氩气的容积为 ,使用前瓶中气体压强为 ,使用后瓶中剩余气体压强为 ;室温温度为 。氩气可视为理想气体。
(i)求压入氩气后炉腔中气体在室温下的压强;
(ii)将压入氩气后的炉腔加热到 ,求此时炉腔中气体的压强。
如图所示,一定质量的理想气体从状态A变化到状态B的过程中,它对外界做功为W,外界向它传递的热量为Q。此过程中气体分子平均动能 (选增“增大”、“不变”或“减小”) ,W与Q满足的关系是 。
【改编】一定质量理想气体经历如图所示的A→B、B→C、C→A三个变化过程,TA="300" K,气体从C→A的过程中做功为100J,同时吸热250J,已知气体的内能与热力学温度成正比.求:
①气体处于C状态时的温度TC;
②气体从C状态到B状态过程中放出的热量.
如图所示,A、B气缸的长度均为60 cm,截面积均为40 cm2,C是可在气缸内无摩擦滑动的、体积不计的活塞,D为阀门.整个装置均由导热材料制成.原来阀门关闭,A内有压强pA = 2.4×105 Pa的氧气.B内有压强pB = 1.2×105 Pa的氢气。阀门打开后,活塞C向右移动,最后达到平衡.(假定氧气和氢气均视为理想气体,连接气缸的管道体积可忽略,环境温度不变)求:
①活塞C移动的距离及平衡后B中气体的压强;
②活塞C移动过程中B中气体是吸热还是放热(简要说明理由).
一定质量的理想气体压强p与热力学温度T的关系图像如图所示,气体在状态A时的体积V0=2 m3,线段AB与p轴平行.
①求气体在状态B时的体积;
②气体从状态A变化到状态B过程中,对外界做功30 J,问该过程中气体吸热还是放热?传递的热量为多少?
温室效应严重威胁着人类生态环境的安全,为了减少温室效应造成的负面影响,有的科学家受到了啤酒在较高压强下能够溶解大量的二氧化碳的启发,设想了一个办法:可以用压缩机将二氧化碳送入深海底,永久贮存起来.海底深处,压强很大,温度很低,海底深水肯定能够溶解大量的二氧化碳,这样就为温室气体二氧化碳找到了一个永远的“家”,从而避免温室效应.在将二氧化碳送入深海底的过程中,以下说法正确的是( )
A.压缩机对二氧化碳做功,能够使其内能增大 |
B.二氧化碳与海水间的热传递能够使其内能减少 |
C.二氧化碳分子平均动能会减少 |
D.每一个二氧化碳分子的动能都会减少 |