质量为1 kg的物块静止在水平面上,从某时刻开始对它施加大小为3 N的水平推力,4 s内物体的位移为16 m,此时将推力突然反向但保持大小不变。求:
⑴再经2 s物体的速度多大?
⑵在前6s内推力对物体所做的总功为多少?
物体从高出地面H处,由静止自由下落,如图所示,不考虑空气阻力,落至地面进入沙坑深h处停止,求物体在沙坑中受到的平均阻力是其重力的多少倍?
质量m="1" t的小汽车,以额定功率行驶在平直公路上的最大速度是vm1="12" m/s,以额定功率开上每前进20 m升高1 m的山坡时最大速度是vm2="8" m/s.如果这两种情况中车所受到的摩擦力相等,求:
(1)汽车发动机的额定功率.
(2)摩擦阻力.
(3)车沿原山坡以额定功率下行时的最大速度vm3.(g取10 m/s2)
如图所示,质量是20kg的小车,在一个与斜面平行的200N的拉力作用下,由静止开始前进了3m,斜面的倾角为300,小车与斜面间的摩擦力忽略不计.求这一过程物体的重力势能增加了多少?物体的动能增加了多少?
如图所示,滑块质量为m,与水平地面的动摩擦因数为0.1,它获得一大小为3的水平速度后,由A向B滑行5R,并滑上光滑的半径为R的圆弧BC,在C点的正上方有一离C高度也为R的旋转平台,沿平台直径方向开有两个离轴心距离相等的小孔P、Q,旋转时两孔均能达到C点的正上方,若滑块过C点后穿过P,又恰能从Q孔落下,则平台的角速度ω应满足什么条件?
A、B两个小物块用轻绳连结,绳跨过位于倾角为300的光滑斜面顶端的轻滑轮,滑轮与转轴之间的摩擦不计,斜面固定在水平桌面上,如图甲所示.第一次, A悬空,B放在斜面上,用t表示B自斜面底端由静止开始运动至斜面顶端所需的时间.第二次,将A和B位置互换,使B悬空,A放在斜面上,发现A自斜面底端由静止开始运动至斜面顶端所需的时间为t/2.(重力加速度g已知)
(1)求A与B两小物块的质量之比.
(2)若将光滑斜面换成一个半径为R(已知)的半圆形光滑轨道固定在水平桌面上,将这两个小物块用轻绳连结后,如图放置,现将B球从轨道边缘由静止释放.若不计一切摩擦,求:B沿半圆形光滑轨道滑到底端时,A、B的速度大小.
一个质量为M的光滑圆环用线悬吊着,将两个质量均为m的有孔小球套在圆环上,且小球能在圆环上无摩擦地滑动,现同时将两小球从环的顶端无初速度释放,使它们分别向两边自由滑下,如图所示。试问当m与M满足什么关系,θ角要在什么范围时,圆环将升起?
气垫导轨工作时,空气从导轨表面的小孔喷出,在导轨表面和滑块内表面之间形成一层薄薄的空气层,使滑块不与导轨表面直接接触,故滑块运动时受到的阻力大大减小,可以忽略不计。为了探究做功与物体动能之间的关系,在气垫导轨上放置一带有遮光片的滑块,滑块的一端与轻弹簧相接,弹簧另一端固定在气垫导轨的一端,将一光电门P固定在气垫导轨底座上适当位置(如图1),使弹簧处于自然状态时,滑块上的遮光片刚好位于光电门的挡光位置,与光电门相连的光电计时器可记录遮光片通过光电门时的挡光时间。实验步骤如下:
①用游标卡尺测量遮光片的宽度d;
②在气垫导轨上适当位置标记一点A(图中未标出,AP间距离远大于d),将滑块从A点由静止释放.由光电计时器读出滑块第一次通过光电门时遮光片的挡光时间t;
③利用所测数据求出滑块第一次通过光电门时的速度v;
④更换劲度系数不同而自然长度相同的弹簧重复实验步骤②③,记录弹簧劲度系数及相应的速度v,如下表所示:
弹簧劲度系数 |
k |
2k |
3k |
4k |
5k |
6k |
v (m/s) |
0.71 |
1.00 |
1.22 |
1.41 |
1.58 |
1.73 |
v2 (m2/s2) |
0.50 |
1.00 |
1.49 |
1.99 |
2.49 |
2.99 |
v3 (m3/s3) |
0.36 |
1.00 |
1.82 |
2.80 |
3.94 |
5.18 |
(1)测量遮光片的宽度时游标卡尺读数如图2所示,读得d= m;
(2)用测量的物理量表示遮光片通过光电门时滑块的速度的表达式v = ;
(3)已知滑块从A点运动到光电门P处的过程中,弹簧对滑块做的功与弹簧的劲度系数成正比,根据表中记录的数据,可得出合力对滑块做的功W与滑块通过光电门时的速度v的关系是 。