如图所示,质量为m=8.0×10-25kg,电荷量为q=1.6×10-15C的带正电粒子从坐标原点O处沿xOy平面射入第一象限内,且与x方向夹角大于等于300的范围内,粒子射入时的速度方向不同,但大小均为v0=2.0×107m/s.现在某一区域内加一方向向里且垂直于xOy平面的匀强磁场,磁感应强度大小为B=0.1T,若这些粒子穿过磁场后都能射到与y轴平行的荧光屏MN上,并且当把荧光屏MN向左移动时,屏上光斑长度和位置保持不变。求:
(1) 粒子从y轴穿过的范围;
(2) 荧光屏上光斑的长度;
(3) 从最高点和最低点打到荧光屏MN上的粒子运动的时间差。
(4)画出所加磁场的最小范围(用斜线表示)
如图所示,和为平行的虚线,上方和 下方都是垂直纸面向里的磁感应强度相同的匀强磁场,两点都在上,带电粒子从点以初速与成斜向上射出,经过偏转后正好过点,经过点时速度方向也斜向上,不计粒子重力。下列说法中正确的是( )
A.粒子一定带正电荷 |
B.粒子一定带负电荷 |
C.若将带电粒子在点时的初速度变大(方向不变),它仍能经过点 |
D.若将带电粒子在点时的初速度变小(方向不变),它不能经过点 |
核聚变反应需几百万度高温,为把高温条件下高速运动的离子约束在小范围内,通常采用磁约束的方法(托卡马克装置)。如图是磁约束装置的截面示意图,环状匀强磁场围成一个中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边界。设环状磁场的内半径R1=0.6m、外半径R2="1.2m" ,磁场的磁感应强度B=0.4T,磁场方向如图。 已知被约束的氦核的荷质比q/m=4.8×107C/kg ,中空区域内的氦核具有各个方向的速度。不计带电粒子的重力。试计算
(1)氦核沿环形截面的半径方向从A点射入磁场,而不能穿出外边界,氦核的最大速度是多少?
(2)所有氦核都不能穿出磁场外边界,氦核的最大速度是多少?
带电粒子的质量,电荷量q=l.6×10-19C,以速度v=3.2×106m/s沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场,磁场的磁感强度为B=0.17T.磁场的宽度为L=10cm.求:(不计重力)
(1)带电粒子离开磁场时的偏转角多大?
(2)带电粒子在磁场中运动的时间是多少?
(3)带电粒子在离开磁场时偏离入射方向的距离d多大?
如图所示,圆形匀强磁场半径R="l" cm,磁感应强度B=IT,方向垂直纸面向里,其上方有一对水平放置的平行金属板M、N,间距d=1cm,N板中央开有小孔S。小孔位于圆心O的正上方,S与0的连线交磁场边界于A.两金属板通过导线与匝数为100匝的矩形线圈相连(为表示线圈的绕向,图中只画了2匝),线圈内有垂直纸面向里且均匀增加的磁场,穿过线圈的磁通量变化率为△Φ/△t=100Wb/s。位于磁场边界上某点(图中未画出)的离子源P,在纸面内向磁场区域发射速度大小均为v=5×105m/s,方向各不相同的带正电离子,离子的比荷q/m=5×107C/kg,已知从磁场边界A点射出的离子恰好沿直线AS进入M、N间的电场.(不计离子重力;离子碰到极板将被吸附)求:
(1)M、N之间场强的大小和方向;
(2)离子源P到A点的距离;
(3)沿直线AS进入M、N间电场的离子在磁场中运动的总时间(计算时取π=3).
(18分)如图所示,光滑的绝缘平台水平固定,在平台右下方有相互平行的两条边界MN与PQ,其竖直距离为h=1.7m,两边界间存在匀强电场和磁感应强度为B=0.9T且方向垂直纸面向外的匀强磁场,MN过平台右端并与水平方向呈θ=37°.在平台左端放一个可视为质点的A球,其质量为mA=0.17kg,电量为q=+0.1C,现给A球不同的水平速度,使其飞出平台后恰好能做匀速圆周运动.g取10m/s2.
(1)求电场强度的大小和方向;
(2)要使A球在MNPQ区域内的运动时间保持不变,则A球的速度应满足的条件?(A球飞出MNPQ区域后不再返回)
(3)在平台右端再放一个可视为质点且不带电的绝缘B球,A球以vA0=3m/s的速度水平向右运动,与B球碰后两球均能垂直PQ边界飞出,则B球的质量为多少?
如图所示,M、N为加速电场的两极板,M板中心有一小孔Q,其正上方有一半径为R1=1m的圆形磁场区域,圆心为0,另有一内半径为R1 ,外半径为m的同心环形磁场区域,区域边界与M板相切于Q点,磁感应强度大小均为B=0.5T,方向相反,均垂直于纸面。一比荷C/kg带正电粒子从N板的P点由静止释放,经加速后通过小孔Q,垂直进入环形磁场区域。已知点P、Q、O在同一竖直线上,不计粒子的重力,且不考虑粒子的相对论效应。
(1) 若加速电压V,求粒子刚进入环形磁场时的速率v0
(2)要使粒子能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3) 在某加速电压下粒子进入圆形磁场区域,恰能水平通过圆心O,之后返回到出发点P,求粒子从Q孔进人磁场到第一次回到Q点所用的时间。
如图所示,在xoy平面内第二象限的某区域存在一个矩形匀强磁场区,磁场方向垂直xoy平面向里,边界分别平利于x轴和y轴。一电荷量为e、质量为m的电子,从坐标原点为O以速度v0射入第二象限,速度方向与y轴正方向成45°角,经过磁场偏转后,通过P(0,a)点,速度方向垂直于y轴,不计电子的重力。
(1)若磁场的磁感应强度大小为B0,求电子在磁场中运动的时间t;
(2)为使电子完成上述运动,求磁感应强度的大小应满足的条件;
(3)若电子到达y轴上P点时,撤去矩形匀强磁场,同时在y轴右侧加方向垂直xoy平面向里的匀强磁场,磁感应强度大小为B1,在y轴左侧加方向垂直xoy平面向里的匀强电场,电子在第(k+1)次从左向右经过y轴(经过P点为第1次)时恰好通过坐标原点。求y轴左侧磁场磁感应强度大小B2及上述过程电子的运动时间t。
(20分)在考古中为了测定古物的年代,可通过测定古物中碳14与碳12的比例,其物理过程可简化为如图所示.碳14与碳12经电离后的原子核带电量都为q,由静止经电压U加速后从O点进人磁感应强度为B的匀强磁场,OM为磁场的下边界线,可在OM上适当位置放置粒子记数器,从而测定碳14与碳12的比例(不计粒子的重力及粒子间的相互作用力).求:
(1)碳14与碳12在磁场中运动的半径比
(2) 在实际中并不是所有粒子都垂直于OM沿ON射入磁场,而是分布在与ON成一定夹角θ的纸面内,要使两种粒子运动到OM直线上时能区分在不同区域,θ角的范围;
(3) θ取最大时,用阴影表示出碳14粒子在磁场中可能出现的区域.
如图所示,两块平行金属极板MN水平放置,板长L =" 1" m.间距d = m,两金属板间电压UMN = 1×104 V;在平行金属板右侧依次存在ABC和FGH两个全等的正三角形区域,正三角形ABC内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板M平齐,BC边与金属板平行,AB边的中点P恰好在下金属板N的右端点;正三角形FGH内存在垂直纸面向外的匀强磁场B2,已知A、F、G处于同一直线上.B、C、H也处于同一直线上.AF两点距离为m。现从平行金属极板MN左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m = 3×10-10 kg,带电量q = +1×10-4 C,初速度v0 = 1×105 m/s。
(1)求带电粒子从电场中射出时的速度v的大小和方向
(2)若带电粒子进入中间三角形区域后垂直打在AC边上,求该区域的磁感应强度B1
(3)若要使带电粒子由FH边界进入FGH区域并能再次回到FH界面,求B2应满足的条件。
如图所示,为一圆形区域的匀强磁场,在O点处有一放射源,沿半径方向射出速率为的不同带电粒子,其中带电粒子1从A点飞出磁场,带电粒子2从B点飞出磁场,不考虑带电粒子的重力.则( )
A.带电粒子1的比荷与带电粒子2的比荷比值为3∶1 |
B.带电粒子1的比荷与带电粒子2的比荷比值为∶1 |
C.带电粒子1与带电粒子2在磁场中运动时间比值为2∶1 |
D.带电粒子1与带电粒子2在磁场中运动时间比值为1∶2 |
如图所示,在xOy坐标系中有虚线OA,OA与x轴的夹角θ=300,OA与y轴之间的区域有垂直纸面向外的匀强磁场,OA与x轴之间的区域有沿x轴正方向的匀强电场,已知匀强磁场的磁感应强度B=0.25 T,匀强电场的电场强度E=5×105 N/C。现从y轴上的P点沿与y轴正方向夹角60°的方向以初速度v0=5×105 m/s射入一个质量m=8×10-26 kg、电荷量q=+8×10-19 C的带电粒子,粒子经过磁场、电场后最终打在x轴上的Q点,已知P点到O的距离为m(带电粒子的重力忽略不计)。求:
(1)粒子在磁场中做圆周运动的半径;
(2)粒子从P点运动到Q点的时间;
(3)Q点的坐标.
( 2012年2月山西四校联考)如图所示,两个横截面分别为圆形和正方形的区域内有磁感应强度相同的匀强磁场,圆的直径和正方形的边长相等,两个电子以相同的速度分别飞入两个磁场区域,速度方向均与磁场方向垂直,进入圆形磁场的电子初速度方向对准圆心;进入正方形磁场的电子初速度方向垂直于边界,从中点进入。则下面判断正确的是:( )
A.两电子在两磁场中运动时,其半径一定相同 |
B.两电子在磁场中运动的时间一定不相同 |
C.进入圆形磁场区域的电子一定先飞离磁场 |
D.进入圆形磁场区域的电子一定不会后飞离磁场 |
(浙江省2012年2月四校联考)如图所示,边长为L的等边三角形ABC为两有界匀强磁场的理想边界,三角形内的磁场方向垂直纸面向外,磁感应强度大小为B,三角形外的磁场(足够大)方向垂直纸面向里,磁感应强度大小也为B。把粒子源放在顶点A处,它将沿∠A的角平分线发射质量为m、电荷量为q、初速度为v0的带电粒子(粒子重力不计)。若从A射出的粒子
①带负电,v0=,第一次到达C点所用时间为t1
②带负电,v0=,第一次到达C点所用时间为t2
③带正电,v0=,第一次到达C点所用时间为t3
④带正电,v0=,第一次到达C点所用时间为t4
A. | B. |
C. | D. |
如图甲所示,两平行金属板长度l不超过0.2 m,两板间电压U随时间t变化的图象如图乙所示。在金属板右侧有一左边界为MN、右边无界的匀强磁场,磁感应强度B =0.01 T,方向垂直纸面向里。现有带正电的粒子连续不断地以速度v0=105m/s射入电场中,初速度方向沿两板间的中线OO’方向。磁场边界MN与中线OO’垂直。已知带电粒子的比荷q/m=108C/kg,粒子的重力和粒子之间的相互作用力均可忽略不计。
(1) 在每个粒子通过电场区域的时间内,可以把板间的电场强度看作是恒定的。请通过计算说明这种处理能够成立的理由;
(2)设t=0.1 s时刻射人电场的带电粒子恰能从金属板边缘穿越电场射入磁场,求该带电粒子射出电场时速度的大小;
(3) 对于所有经过电场射入磁场的带电粒子,设其射人磁场的入射点和从磁场射出的出射点间的距离为d,试判断d的大小是否随时间变化?若不变,证明你的结论;若变化,求出d的变化范围。