[选修4-5:不等式选讲]
已知函数 f ( x ) = – x 2 + ax + 4 , g ( x ) = │x + 1 │ + │x– 1 │ .
(1)当 a = 1 时,求不等式 f ( x ) ≥ g ( x ) 的解集;
(2)若不等式 f ( x ) ≥ g ( x ) 的解集包含 [ – 1 , 1 ] ,求 a的取值范围.
已知椭圆C:=1(a>b>0)的两个焦点分别为F1,F2,离心率为,且过点(2,). (1)求椭圆C的标准方程; (2)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:为定值.
如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E. (1)求证:MA⊥MB; (2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.
如图所示,已知抛物线方程为y2=4x,其焦点为F,准线为l,A点为抛物线上异于顶点的一个动点,射线HAE垂直于准线l,垂足为H,C点在x轴正半轴上,且四边形AHFC是平行四边形,线段AF和AC的延长线分别交抛物线于点B和点D. (1)证明:∠BAD=∠EAD; (2)求△ABD面积的最小值,并写出此时A点的坐标.
设抛物线的顶点在原点,准线方程为x=-. (1)求抛物线的标准方程; (2)若点P是抛物线上的动点,点P在y轴上的射影是Q,点M,试判断|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,请说明理由; (3)过抛物线焦点F作互相垂直的两直线分别交抛物线于A,C,B,D,求四边形ABCD面积的最小值.
已知椭圆与双曲线x2-y2=0有相同的焦点,且离心率为. (1)求椭圆的标准方程; (2)过点P(0,1)的直线与该椭圆交于A,B两点,O为坐标原点,若=2,求△AOB的面积.