为了研究一种新药的疗效,选100名患者随机分成两组,每组各 50 名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标 x 和 y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.
(1)从服药的50名患者中随机选出一人,求此人指标 y 的值小于 60 的概率;
(2)从图中A,B,C,D四人中随机选出两人,记 ξ 为选出的两人中指标x的值大于1.7的人数,求 ξ 的分布列和数学期望 E ( ξ ) ;
(3)试判断这100名患者中服药者指标 y 数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
已知二项式的展开式中各项系数和为64. ⑴求; ⑵求展开式中的常数项.
已知虚数z满足,且为实数,求z.
已知函数 (1)试求函数的最大值; (2)若存在,使成立,试求的取值范围; (3)当且时,不等式恒成立,求的取值范围;
已知函数. (1)判断并证明的奇偶性; (2)求证:; (3)已知a,b∈(-1,1),且,,求,的值.
已知命题p:方程x2+mx+1=0有负实数根; 命题q:方程4x2+4(m-2)x+1=0无实数根, 若“p或q”为真命题,“p且q”为假命题,求实数m的取值范围。