为了研究一种新药的疗效,选100名患者随机分成两组,每组各 50 名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标 x 和 y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.
(1)从服药的50名患者中随机选出一人,求此人指标 y 的值小于 60 的概率;
(2)从图中A,B,C,D四人中随机选出两人,记 ξ 为选出的两人中指标x的值大于1.7的人数,求 ξ 的分布列和数学期望 E ( ξ ) ;
(3)试判断这100名患者中服药者指标 y 数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
已知函数(且)恰有一个极大值点和一个极小值点,且其中一个极值点是 (1)求函数的另一个极值点; (2)设函数的极大值为M,极小值为m,若对恒成立,求的取值范围.
如图,四棱锥P-ABCD中,PA⊥底面ABCD,∥,AD=CD=1,∠=120°,=,∠=90°,M是线段PD上的一点(不包括端点). (1)求证:BC⊥平面PAC; (2)求异面直线AC与PD所成的角的余弦值; (3)若点M为侧棱PD中点,求直线MA与平面PCD 所成角的正弦值.
已知等比数列的公比大于1,是数列的前n项和,,且,,依次成等差数列,数列满足:,) (1) 求数列、的通项公式; (2) 求数列的前n项的和.
已知,其中,,若图象中相邻的对称轴间的距离不小于. (1)求的取值范围; (2)在中,分别为角的对边.当取最大值时,,,,求此时的值.
.已知函数. (1)如果,求的单调区间和极值; (2)如果,函数在处取得极值. (i)求证:; (ii)求证:.