为了研究一种新药的疗效,选100名患者随机分成两组,每组各 50 名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标 x 和 y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.
(1)从服药的50名患者中随机选出一人,求此人指标 y 的值小于 60 的概率;
(2)从图中A,B,C,D四人中随机选出两人,记 ξ 为选出的两人中指标x的值大于1.7的人数,求 ξ 的分布列和数学期望 E ( ξ ) ;
(3)试判断这100名患者中服药者指标 y 数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
如图,已知三棱锥A—BPC中,AP⊥PC, AC⊥BC,M为AB中点,D为PB中点, 且△PMB为正三角形。 (Ⅰ)求证:DM∥平面APC; (Ⅱ)若BC=4,AB=20,求三棱锥D—BCM的体积。
【改编】已知圆,直线 (1)求证:对,直线与圆总有两个不同的交点A、B; (2)求弦AB长最大、最小时直线的方程; (3)若定点P(1,1)满足,求直线的方程。
【原创】如图,在三棱柱中,,底面为等边三角形,且,、、分别是,的中点. (1)求证:∥; (2)求证:; (3)求三棱锥的体积.
已知圆C和轴相切,圆心C在直线上,且被直线截得的弦长为,求圆C的方程.
如图,在底面为平行四边形的四棱锥中, ,平面,点是的中点. (1)求证:; (2)求证:平面;