为了研究一种新药的疗效,选100名患者随机分成两组,每组各 50 名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标 x 和 y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.
(1)从服药的50名患者中随机选出一人,求此人指标 y 的值小于 60 的概率;
(2)从图中A,B,C,D四人中随机选出两人,记 ξ 为选出的两人中指标x的值大于1.7的人数,求 ξ 的分布列和数学期望 E ( ξ ) ;
(3)试判断这100名患者中服药者指标 y 数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
已知函数f(x)=(2cos2x-1)sin 2x+cos 4x. (1)求f(x)的最小正周期及最大值; (2)若α∈,且f(α)=,求α的值.
已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0. (1)求函数f(x)的单调区间; (2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.
设函数f(x)=x+ax2+bln x,曲线y=f(x)在点P(1,0)处的切线斜率为2. (1)求a,b的值; (2)证明:f(x)≤2x-2.
已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4. (1)求a,b的值; (2)讨论f(x)的单调性,并求f(x)的极大值.
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a的值; (2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.