[物理——选修 3-3]
在水下气泡内空气的压强大于气泡表面外侧水的压强, 两压强差 Δ p 与气泡半径
r 之间的关系为 Δ p = 2 σ r , 其中 σ = 0 . 070 N / m 。现让水下 10 m 处一半径为 0 . 50 cm 的气泡缓慢上升,已知大气压强 p 0 = 1 . 0 × 10 5 Pa , 水的密度 ρ = 1 . 0 × 10 3 kg / m 3 , 重力加速度大小 g = 10 m / s 2 。
(i) 求在水下 10 m 处气泡内外的压强差;
(ii)忽略水温随水深的变化, 在气泡上升到十分接近水面时, 求气泡的半径与其原来半径之 比的近似值。
如图所示,两足够长的光滑金属导轨竖直放置,相距为 L ,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为 m 、有效电阻为 R 的导体棒在距磁场上边界 h 处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为 I 。整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。求: (1)磁感应强度的大小 B ; (2)电流稳定后,导体棒运动速度的大小 v ; (3)流经电流表电流的最大值 I m
汽车行驶时轮胎的胎压太高容易造成爆胎事故,太低又会造成耗油上升。已知某型号轮胎能在-40 C o ~90 C o 正常工作,为使轮胎在此温度范围内工作时的最高胎压不超过3.5 atm ,最低胎压不低于1.6 atm ,那么在 t=20°C 时给该轮胎充气,充气后的胎压在什么范围内比较合适?(设轮胎容积不变)
有两个完全相同的小滑块 A 和 B , A 沿光滑水平面以速度 v 0 与静止在平面边缘 O 点的 B 发生正碰,碰撞中无机械能损失。碰后 B 运动的轨迹为 OD 曲线,如图所示。
(1)已知滑块质量为 m ,碰撞时间为 ∆t ,求碰撞过程中 A 对 B 平均冲力的大小。
(2)为了研究物体从光滑抛物线轨道顶端无初速下滑的运动,特制做一个与 B 平抛轨道完全相同的光滑轨道,并将该轨道固定在与 OD 曲线重合的位置,让 A 沿该轨道无初速下滑(经分析, A 下滑过程中不会脱离轨道)。 a.分析 A 沿轨道下滑到任意一点的动量 p A 与 B 平抛经过该点的动量 p B 的大小关系;
b.在 OD 曲线上有一 M 点, O 和 M 两点连线与竖直方向的夹角为45°。求 A 通过 M 点时的水平分速度和竖直分速度。
有两列简谐横波 a 、 b 在同一媒质中沿 x 轴正方向传播,波速均为 v=2.5m/s 。在 t=0 时,两列波的波峰正好在 x=2.5m 处重合,如图所示。 (1)求两列波的周期 T a 和 T b 。
(2)求 t=0 时,两列波的波峰重合处的所有位置。
(3)辨析题:分析并判断在 t=0 时是否存在两列波的波谷重合处。某同学分析如下:既然两列波的波峰存在重合处,那么波谷与波谷重合处也一定存在。只要找到这两列波半波长的最小公倍数,……,即可得到波谷与波谷重合处的所有位置。
你认为该同学的分析正确吗?若正确,求出这些点的位置。若不正确,指出错误处并通过计算说明理由。
两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。在 t=0 时刻由负极板释放一个初速度为零的带负电的粒子(不计重力)。若电场强度 E 0 、磁感应强度 B 0 、粒子的比荷 q m 均已知,且 t 0 = 2 π m q B 0 ,两板间距 h= 10 π2 m E 0 q B 0 2 。 (1)求粒子在 0~ t 0 时间内的位移大小与极板间距 h 的比值。
(2)求粒子在板板间做圆周运动的最大半径(用 h 表示)。
(3)若板间电场强度 E 随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。