如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y 2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
(Ⅰ)设AB中点为M,证明:PM垂直于y轴;
(Ⅱ)若P是半椭圆x 2+ y 2 4 =1(x<0)上的动点,求△PAB面积的取值范围.
已知等比数列满足:,公比,数列的前项和为,且. (1)求数列和数列的通项和; (2)设,证明:.
下表是某市从3月份中随机抽取的天空气质量指数()和“”(直径小于等于微米的颗粒物)小时平均浓度的数据,空气质量指数()小于表示空气质量优良.
(1)根据上表数据,估计该市当月某日空气质量优良的概率; (2)在上表数据中,在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件为“抽取的两个日期中,当天‘’的小时平均浓度不超过”,求事件发生的概率; (3)在上表数据中,在表示空气质量优良的日期中,随机抽取天,记为“”小时平均浓度不超过的天数,求的分布列和数学期望.
在中,已知,且. (1)求角和的值; (2)若的边,求边的长.
已知函数(). (1)若,求函数的极值; (2)设. ① 当时,对任意,都有成立,求的最大值; ② 设的导函数.若存在,使成立,求的取值范围.
已知焦点在y轴,顶点在原点的抛物线C1经过点P(2,2),以C1上一点C2为圆心的圆过定点A(0,1),记为圆与轴的两个交点. (1)求抛物线的方程; (2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论; (3)当圆心在抛物线上运动时,记,,求的最大值.