信息熵是信息论中的一个重要概念.设随机变量 X所有可能的取值为 1 , 2 , ⋯ , n ,且 P ( X = i ) = p i > 0 ( i = 1 , 2 , ⋯ , n ) , ∑ i = 1 n p i = 1 ,定义 X的信息熵 H ( X ) = - ∑ i = 1 n p i log 2 p i .( )
若n=1,则H(X)=0
若n=2,则H(X)随着 p 1 的增大而增大
若 p i = 1 n ( i = 1 , 2 , ⋯ , n ) ,则H(X)随着n的增大而增大
若n=2m,随机变量Y所有可能的取值为 1 , 2 , ⋯ , m ,且 P ( Y = j ) = p j + p 2 m + 1 - j ( j = 1 , 2 , ⋯ , m ) ,则H(X)≤H(Y)
若设若,,则的最小值为( ▲ )
的展开式含项,则最小的自然数是( ▲ )
某程序框图如图所示,则该程序运行后输出的S的值为( ▲ )
若函数的图象的一条对称轴在内,则满足此条件的一个值是(▲ )
设是抛物线C1:y2=2px (p>0) 的焦点,点A是抛物线与双曲线C2:(a>0,b>0)的一条渐近线的一个公共点,且AF⊥x轴,则双曲线的离心率为( ▲ )