信息熵是信息论中的一个重要概念.设随机变量 X所有可能的取值为 1 , 2 , ⋯ , n ,且 P ( X = i ) = p i > 0 ( i = 1 , 2 , ⋯ , n ) , ∑ i = 1 n p i = 1 ,定义 X的信息熵 H ( X ) = - ∑ i = 1 n p i log 2 p i .( )
若n=1,则H(X)=0
若n=2,则H(X)随着 p 1 的增大而增大
若 p i = 1 n ( i = 1 , 2 , ⋯ , n ) ,则H(X)随着n的增大而增大
若n=2m,随机变量Y所有可能的取值为 1 , 2 , ⋯ , m ,且 P ( Y = j ) = p j + p 2 m + 1 - j ( j = 1 , 2 , ⋯ , m ) ,则H(X)≤H(Y)
已知函数,则的值是()
函数的零点所在的区间为( )
下列四个图像中,是函数图像的是()
下列四组函数中表示相等函数的是()
若集合,下列关系式中成立的是()