0-1周期序列在通信技术中有着重要应用.若序列 a 1 a 2 ⋯ a n ⋯ 满足 a i ∈ { 0 , 1 } ( i = 1 , 2 , ⋯ ) ,且存在正整数 m ,使得 a i + m = a i ( i = 1 , 2 , ⋯ ) 成立,则称其为0-1周期序列,并称满足 a i + m = a i ( i = 1 , 2 , ⋯ ) 的最小正整数 m 为这个序列的周期.对于周期为 m 的0-1序列 a 1 a 2 ⋯ a n ⋯ , C ( k ) = 1 m ∑ i = 1 m a i a i + k ( k = 1 , 2 , ⋯ , m - 1 ) 是描述其性质的重要指标,下列周期为5的0-1序列中,满足 C ( k ) ≤ 1 5 ( k = 1 , 2 , 3 , 4 ) 的序列是( )
11010 ⋯
11011 ⋯
10001 ⋯
11001 ⋯
已知函数,下列结论正确的个数为() (1)图像关于对称 (2)函数在区间上单调递增 (3)函数在区间上最大值为1 (4)函数按向量平移后,所得图像关于原点对称
已知函数的图象可能是()
设则m、n、p的大小关系是()
设等比数列的前n项和为,若()
已知向量=()