信息熵是信息论中的一个重要概念.设随机变量 X所有可能的取值为 1 , 2 , ⋯ , n ,且 P ( X = i ) = p i > 0 ( i = 1 , 2 , ⋯ , n ) , ∑ i = 1 n p i = 1 ,定义 X的信息熵 H ( X ) = - ∑ i = 1 n p i log 2 p i .( )
A 若n=1,则H(X)=0
若n=2,则H(X)随着 p 1 的增大而增大
若 p i = 1 n ( i = 1 , 2 , ⋯ , n ) ,则H(X)随着n的增大而增大
若n=2m,随机变量Y所有可能的取值为 1 , 2 , ⋯ , m ,且 P ( Y = j ) = p j + p 2 m + 1 - j ( j = 1 , 2 , ⋯ , m ) ,则H(X)≤H(Y)
已知函数是(,)上的偶函数,且,在[0,5]上有且只有,则在[-2012,2012]上的零点个数为()
函数在区间[-1,1]上的最大值是()
中,A=,BC=3,则的周长为()
函数的单调递增区间是()
方程在(,)内()