信息熵是信息论中的一个重要概念.设随机变量 X所有可能的取值为 1 , 2 , ⋯ , n ,且 P ( X = i ) = p i > 0 ( i = 1 , 2 , ⋯ , n ) , ∑ i = 1 n p i = 1 ,定义 X的信息熵 H ( X ) = - ∑ i = 1 n p i log 2 p i .( )
A 若n=1,则H(X)=0
若n=2,则H(X)随着 p 1 的增大而增大
若 p i = 1 n ( i = 1 , 2 , ⋯ , n ) ,则H(X)随着n的增大而增大
若n=2m,随机变量Y所有可能的取值为 1 , 2 , ⋯ , m ,且 P ( Y = j ) = p j + p 2 m + 1 - j ( j = 1 , 2 , ⋯ , m ) ,则H(X)≤H(Y)
“”是“函数在区间上为增函数”的()
已知向量,,且,则实数的值为( )
函数的定义域是()
设全集,集合,,则图中的阴影部分表示的集合为()
已知在R上可导,且,则的大小关系是( )