信息熵是信息论中的一个重要概念.设随机变量 X所有可能的取值为 1 , 2 , ⋯ , n ,且 P ( X = i ) = p i > 0 ( i = 1 , 2 , ⋯ , n ) , ∑ i = 1 n p i = 1 ,定义 X的信息熵 H ( X ) = - ∑ i = 1 n p i log 2 p i .( )
A 若n=1,则H(X)=0
若n=2,则H(X)随着 p 1 的增大而增大
若 p i = 1 n ( i = 1 , 2 , ⋯ , n ) ,则H(X)随着n的增大而增大
若n=2m,随机变量Y所有可能的取值为 1 , 2 , ⋯ , m ,且 P ( Y = j ) = p j + p 2 m + 1 - j ( j = 1 , 2 , ⋯ , m ) ,则H(X)≤H(Y)
已知正方体的棱长为2,则其外接球的半径为
在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率为( )
阅读下列材料,然后解答问题;对于任意实数,符号[]表示“不超过的最大整数”,在数轴上,当是整数,[]是,当不是整数时,[]是左侧的第一个整数,这个函数叫做“取整函数”,也叫高斯()函数,如[-2]=-2、[-1.5]=-2、[2.5]="2 " 定义函数{}=-[],给出下列四个命题;①函数[]的定义域是,值域为[0,1] ②方程{}=有无数个解;③函数{}是周期函数 ④函数{}是增函数。其中正确命题的序号是( )
已知偶函数在区间单调递增,则满足<的x 取值范围是