已知数列 a n 是公差为 2 的等差数列, 其前 8 项的和为 64 . 数列 b n 是公比大于 0 的等比数列, b 1 = 4 , b 3 - b 2 = 48
(1)求数列 a n 和 b n 的通项公式.
( 2 ) 记 c n = b 2 n + 1 b n n ∈ N * .
(1) 证明: c n 2 - c 2 是等比数列.
(2) 证明: ∑ k = 1 n a k a k + 1 c k 2 - c 2 k < 2 2 n ∈ N * .
已知定义域为的函数同时满足以下三个条件:(1) 对任意的,总有;(2);(3) 若,,且,则有成立,则称为“友谊函数”,请解答下列各题:(1)若已知为“友谊函数”,求的值; (2)函数在区间上是否为“友谊函数”?并给出理由.(3)已知为“友谊函数”,假定存在,使得且, 求证:.
如图,四棱锥中, ∥,,侧面为等边三角形..(1)证明:(2)求AB与平面SBC所成角的正弦值。
电流强度I与时间t的关系式 。(1)在一个周期内如图所示,试根据图象写出的解析式;(2)为了使中t在任意一段秒的时内I能同时取最大值|A|和最小值-|A|,那么正整数的最小值为多少?
已知 (1)化简; (2)若是第三象限角,且的值; (3)求的值。
集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C=,求a的值.