已知双曲线的中心在坐标原点,焦点在轴上,离心率,虚轴长为2.(1)求双曲线的标准方程;(2)若直线与双曲线相交于两点,(均异于左、右顶点),且以为直径的圆过双曲线的左顶点,求证:直线过定点,并求出该定点的坐标.
已知向量,,若函数.(1)求的最小正周期;(2)若,求的最大值及相应的值;(3)若,求的单调递减区间.
在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程为(α为参数)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
已知函数f(x)= -ax(a∈R,e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)若a=1,函数g(x)=(x-m)f(x)-+x2+x在区间(0,+)上为增函数,求整数m 的最大值.
已知椭圆C:和直线L:="1," 椭圆的离心率,坐标原点到直线L的距离为。(1)求椭圆的方程;(2)已知定点,若直线与椭圆C相交于M、N两点,试判断是否存在值,使以MN为直径的圆过定点E?若存在求出这个值,若不存在说明理由。
如图,在三棱柱ABC-A1B1C1中,已知侧面,AB=BC=1,BB1=2,∠BCC1=.(1) 求证:C1B⊥平面ABC;(2)设 =l(0≤l≤1),且平面AB1E与BB1E所成的锐二面角 的大小为30°,试求l的值.