已知椭圆上的点到左右两焦点的距离之和为,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)过右焦点的直线交椭圆于两点.(1)若轴上一点满足,求直线斜率的值;(2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
(本小题满分12分) 已知点及圆:. (1)若直线过点且与圆心的距离为1,求直线的方程; (2)设过点P的直线与圆交于、两点,当时,求以线段为直径的圆的方程;(3)设直线与圆交于,两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由.
(本小题满分12分) 如图,为正三角形,平面,是的中点, (1)求证:DM//面ABC; (2)平面平面。 (3)求直线AD与面AEC所成角的正弦值;
.(本小题满分10分) 如图所示,在三棱锥中,,且。 (1)证明:; (2)求侧面与底面所成二面角的大小;
(本小题满分10分) 如图,矩形的两条对角线相交于点,边所在直线的方程为, 点在边所在直线上. (1)求边所在直线的方程; (2)求矩形外接圆的方程;
(本小题满分8分) 如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,冰淇淋会从杯子溢出吗?请用你的计算数据说明理由.
_