已知f(x)是二次函数,不等式f(x)<0的解集是(0,5) ,且f(x)在区间[-1,4]上的最大值是12.(1)求f(x)的解析式.(2)求f(x)在区间[-1,4]的值域.
已知函数,的最大值为2. (Ⅰ)求函数在上的值域; (Ⅱ)已知外接圆半径,,角所对的边分别是,求的值.
在平面直角坐标系中,已知分别是椭圆的左、右焦点,椭圆与抛物线有一个公共的焦点,且过点. (Ⅰ)求椭圆的方程; (Ⅱ)设点是椭圆在第一象限上的任一点,连接,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,,试证明为定值,并求出这个定值; (III)在第(Ⅱ)问的条件下,作,设交于点, 证明:当点在椭圆上移动时,点在某定直线上.
已知为函数图象上一点,为坐标原点,记直线的斜率. (Ⅰ)若函数在区间上存在极值,求实数的取值范围; (Ⅱ)如果对任意的,,有,求实数的取值范围.
生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为 次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
(Ⅰ)试分别估计元件A、元件B为正品的概率; (Ⅱ)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下; (i)求生产5件元件B所获得的利润不少于300元的概率; (ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.
设各项均为正数的数列的前项和为,满足且恰好是等比数列的前三项. (Ⅰ)求数列、的通项公式; (Ⅱ)记数列的前项和为,若对任意的,恒成立,求实数的取值范围.