若存在实常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”,已知函数,,,有下列命题: ①在内单调递增; ②和之间存在“隔离直线”,且的最小值为; ③和之间存在“隔离直线”,且的取值范围是;· ④和之间存在唯一的“隔离直线”. 其中真命题的个数为 (请填所有正确命题的序号)
若四棱柱的底面是边长为1的正方形,且侧棱垂直于底面,若与底面成60°角,则二面角的平面角的正切值为 .
已知平面和直线,给出条件:①;②;③;④;⑤.(1)当满足条件 时,有;(2)当满足条件 时,有.
已知两条不同直线、,两个不同平面、,给出下列命题:①若垂直于内的两条相交直线,则⊥;②若∥,则平行于内的所有直线;③若,且⊥,则⊥;④若,,则⊥;⑤若,且∥,则∥.其中正确命题的序号是 .(把你认为正确命题的序号都填上)
不等式的解集为,则等于_ ___。
已知两条相交直线,,∥平面,则与的位置关系是 .