已知数列{an}满足a1=1,(n+1)an+1=nan(n∈N*).(1)求{an}的通项公式.(2)若bn=an,数列{bn}的前n项和为Tn,求证:Tn<2.
如图,直线:与直线:之间的阴影区域(不含边界)记为,其左半部分记为,右半部分记为.(1)分别用不等式组表示和;(2)若区域中的动点到,的距离之积等于,求点的轨迹的方程;
直线和轴,轴分别交于点,以线段为边在第一象限内作等边△,如果在第一象限内有一点使得△和△的面积相等, 求的值。
已知函数(Ⅰ)判断f(x)在上的单调性,并证明你的结论;(Ⅱ)若集合A="{y" | y=f(x),},B=[0,1], 试判断A与B的关系;(Ⅲ)若存在实数a、b(a<b),使得集合{y | y=f(x),a≤x≤b}=[ma,mb],求非零实数m的取值范围.
提高南洋大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(Ⅰ)当时,求函数的表达式; (Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时) 可以达到最大,并求出最大值.(精确到1辆/小时)
已知函数(Ⅰ)求曲线y=f(x)在(1,11)处的切线方程;(Ⅱ)求函数的单调区间(Ⅲ)求函数在[-2,2]上的最值。