某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=其中x是仪器的月产量.(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润.)
已知数列满足(). (1)求的值; (2)求(用含的式子表示); (3)(理)记数列的前项和为,求(用含的式子表示).
某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域内,乙中转站建在区域内.分界线固定,且=百米,边界线始终过点,边界线满足. 设()百米,百米. (1)试将表示成的函数,并求出函数的解析式; (2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.
已知复数. (1)求的最小值; (2)设,记表示复数z的虚部).将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得的图像向右平移个单位长度,得到函数的图像.试求函数的解析式.
(理)已知直三棱柱中,,是棱的中点.如图所示. (1)求证:平面; (2)求二面角的大小.
如下图所示,椭圆的左顶点为,是椭圆上异于点的任意一点,点与点关于点对称. (1)若点的坐标为,求的值; (2)若椭圆上存在点,使得,求的取值范围.