已知抛物线,过焦点且垂直轴的弦长为6,抛物线上的两个动点和,其中且,线段的垂直平分线与轴交于点.(1)求抛物线方程;(2)试证线段的垂直平分线经过定点,并求此定点;(3)求面积的最大值.
已知M(1+cos 2x,1),N(1,sin2x+a)(x∈R,a∈R,a是常数),且y=·(O为坐标原点). (1)求y关于x的函数关系式y=f(x). (2)若x∈[0,]时,f(x)的最大值为2013,求a的值.
已知A,B,C三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),其中α∈(,). (1)若||=||,求角α的值. (2)若·=-1,求tan(α+)的值.
在平面直角坐标系中,已知向量a=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤). (1)若⊥a,且||=||(O为坐标原点),求向量. (2)若向量与向量a共线,当k>4,且tsinθ取最大值4时,求·.
已知A(-1,0),B(0,2),C(-3,1),·="5," =10. (1)求D点的坐标. (2)若D点在第二象限,用,表示. (3)设=(m,2),若3+与垂直,求的坐标.
已知四点A(x,0),B(2x,1),C(2,x),D(6,2x). (1)求实数x,使两向量,共线. (2)当两向量与共线时,A,B,C,D四点是否在同一条直线上?