设函数f(x)对任意x,y,都有,且时,f(x)<0,f(1)=-2.(1)求证:f(x)是奇函数;(2)试问在时,f(x)是否有最值?如果有求出最值;如果没有,说出理由.
(本小题满分10分)在△ABC中,角A、B、C对边分别是,且满足.(1)求角A的大小;(2)求的最大值,并求取得最大值时角B、C的大小.
选修4-5:不等式选讲已知且,若恒成立,(Ⅰ)求的最小值;(Ⅱ)若对任意的恒成立,求实数的取值范围.
选修4-4:坐标系与参数方程(Ⅰ)求直线(为参数)的倾斜角的大小. (Ⅱ)在极坐标系中,已知点,是曲线上任意一点,求的面积的最小值.
选修4-2:矩阵与变换 已知矩阵,向量,(Ⅰ)求矩阵A的特征值和对应的特征向量;(Ⅱ)求向量,使得.
.已知函数(Ⅰ)当时,求的值域(Ⅱ)设,若在恒成立,求实数a的取值范围(III)设,若在上的所有极值点按从小到大排成一列,求证: