在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.(1)写出C的方程;(2)若,求k的值;(3)若点A在第一象限,证明:当k>0时,恒有||>||.
如图,四棱锥P-ABCD中,底面为菱形,且,. (Ⅰ)求证:; (Ⅱ)若,求二面角的余弦值。
在△ABC中,分别为角A、B、C的对边,若=(,),,且. (1)求角A的度数; (2)当,且△ABC的面积时,求边的值和△ABC的面积。
选修4-5不等式证明选讲 已知函数,且满足的解集不是空集. (1)求实数的取值范围; (2)求的最小值.
选修4-4极坐标与参数方程 已知曲线的极坐标方程为,曲线(为参数). (1)求曲线的普通方程; (2)若点在曲线上运动,试求出到曲线的距离的最小值.
选修4-1 几何证明选讲 如图,是圆的直径,点在弧上,点为弧的中点,作于点,与交于点,与交于点. (1)证明:; (2)若,,求圆的半径.