(本小题满分12分)在数列中,,.(Ⅰ)求,;(Ⅱ)求证:数列单调递减;(III)求证:(,,).
已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.
己知函数 (Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设,若对任意,恒有,求a的取值范围.
已知椭圆C的中心在原点,焦点在x轴上,离心率等于 ,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点,①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
如图,在直三棱柱中,平面 侧面且.(Ⅰ)求证:; (Ⅱ)若直线AC与平面所成的角为,求锐二面角的大小.
现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏。(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记 ,求随机变量的分布列与数学期望 .