如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC, AB∥DC. (1)求证:D1C⊥AC1; (2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.
设函数.(Ⅰ)当时,解不等式;(Ⅱ)当时,不等式的解集为,求实数的取值范围.
直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),为直线与曲线的公共点. 以原点为极点,轴的正半轴为极轴建立极坐标系.(Ⅰ)求点的极坐标;(Ⅱ)将曲线上所有点的纵坐标伸长为原来的倍(横坐标不变)后得到曲线,过点作直线,若直线被曲线截得的线段长为,求直线的极坐标方程.
已知函数在处取得极值.(Ⅰ)求的值;(Ⅱ)证明:当时,.
已知是抛物线上的点,是的焦点, 以为直径的圆与轴的另一个交点为.(Ⅰ)求与的方程;(Ⅱ)过点且斜率大于零的直线与抛物线交于两点,为坐标原点,的面积为,证明:直线与圆相切.
如图,在四棱锥中,为平行四边形,且,,为的中点,,.(Ⅰ)求证://;(Ⅱ)求三棱锥的高.