(本小题满分12分)已知函数.(1)当时,求在最小值;(2)若存在单调递减区间,求的取值范围;(3)求证:().
已知函数. (Ⅰ)当时,求函数的单调区间; (Ⅱ)若函数的图像在点处的切线的倾斜角为,问:m在什么范围取值时,对于任意的,函数在区间上总存在极值? (Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数p的取值范围.
已知数列的前项和为,满足,且. (Ⅰ)求,,; (Ⅱ)猜想数列的通项公式,并用数学归纳法加以证明.
已知抛物线. (Ⅰ)过点M作抛物线的切线,求此切线方程; (Ⅱ)过定点的直线与抛物线相交于两点、,抛物线在、两点处的切线的交点为,试求点的轨迹方程.
已知复数满足(为虚数单位).求.
已知函数,当时,的极大值为7;当时,有极小值. (Ⅰ)求的值; (Ⅱ)函数的极小值.