已知中,点,动点满足(常数),点的轨迹为Γ.(Ⅰ)试求曲线Γ的轨迹方程;(Ⅱ)当时,过定点的直线与曲线Γ相交于两点,是曲线Γ上不同于的动点,试求面积的最大值.
已知在的展开式中,第6项为常数项. (1)求n; (2)求含的项的系数; (3)求展开式中所有的有理项.
已知 是数列的前项和,且 (1)求数列的通项公式; (2)设各项均不为零的数列中,所有满足的正整数的个数称为这个数列的变号数,令(n为正整数),求数列的变号数; (3)记数列的前的和为,若对恒成立,求正整数的最小值。
在锐角三角形中,分别是角的对边,且 (1)求角; (2)若,,求的面积。 (3)求的取值范围。
已知。 (1)若函数有最大值,求实数的值; (2)若不等式对一切实数恒成立,求实数的取值范围; (3)若,解不等式。
已知是公差不为零的等差数列,,且成等比数列. (1)求数列的通项公式; (2)若,求数列的前n项和.